
1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 1/31

Ampleforth
Ethereum Protocol Security Assessment
November 20 th , 2018

Prepared For:
Brandon Iles | Ampleforth
brandon@ampleforth.org

Prepared By:
Evan Sultanik | Trail of Bits
evan.sultanik@trailofbits.com

Dominik Czarnota | Trail of Bits
dominik.czarnota@trailofbits.com

Changelog:
November 20th, 2018: Initial report delivered
December 17th, 2018: Updates and name change from μFragments to Ampleforth

mailto:brandon@ampleforth.org
mailto:evan.sultanik@trailofbits.com
mailto:dominik.czarnota@trailofbits.com

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 2/31

Executive Summary

Engagement Goals & Scope

Coverage

Project Dashboard

Recommendations Summary
Short Term
Long Term

Findings Summary
1. Rebasing will fail if no market sources are fresh
2. Malicious or erroneous MarketSource can break rebasing
3. Zos-lib is deprecated
4. Possible reentrancy if the minimum rebase interval is zero
5. Market source removal is dangerous
6. Contract upgrades can catastrophically fail if the storage layout changes
7. Rebase predictability may make Ampleforth a target for arbitrage

A. Vulnerability Classifications

B. Code Quality Recommendations
General Recommendations
uFragments/contracts/UFragments.sol

C. ERC20 approve race condition

D. Slither

E. Echidna property-based testing

F. Manticore formal verification

G. Hosting Provider Account Security Controls

H. SSH Security Checklist

I. Personal Security Guidelines

© 2018 Trail of Bits Ampleforth Assessment | 1

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 3/31

Executive Summary
Between November 5 th and 20 th , 2018, Trail of Bits assessed the smart contracts of the
Ampleforth Ethereum protocol codebase. Two engineers conducted this assessment over 1

the course of four person-weeks. We evaluated the code from commit ID
888fccaf05786f3f7f49e18ff040f911d44906f4 of the market‑oracle git repository, and
commit ID 07437020b54c535ced2f4b5f1a0cc1a2ee6618e3 of the uFragments repository,
reflecting the state of the project as of about October 8 th , 2018.

The first week consisted of the engineers familiarizing themselves with the codebase,
running static analysis tools such as Slither , and manual code inspection. The second and
final week concluded our manual analysis of the Solidity code. We extracted a set of
security properties by studying the codebase and communicating with the developers, then
encoded those properties into tests for Echidna and Manticore. See the appendices for
related discussion.

Several of our findings pertain to mishandling of edge cases in market oracle output. These
can cause rebasing to fail to self-stabilize the token, either due to rare but plausible natural
causes, or due to a malicious or erroneous market source. They can also cause erroneous
events to be emitted. One finding concerns the use of a deprecated version of a library.
This appears to have been addressed in a subsequent version of the code than what we
assessed. The two final findings relate to the potential for catastrophic failure during
contract upgrading, as well as the possibility of arbitrage due to rebasing predictability.

In addition to the security findings, we discuss code quality issues not related to any
particular vulnerability in Appendix B . A few additional appendices are also provided for
guidance on operations and deploying the off-chain portion of the codebase.

The Ampleforth ERC20 token appears to be vulnerable to a well-known race condition
vulnerability inherent to the ERC20 specification itself. The token already implements one
of our suggested mitigations. We have included Appendix C to provide background on the
issue as well as offer additional mitigations.

1 μFragments was rebranded as Ampleforth subsequent to our assessment but prior to the
finalization of this report. The report has been modified such that all references to the
company/product “μFragments” were replaced with “Ampleforth”. However, all references
to source code artifacts (e.g. , smart contract names) remain as they were in the assessed
version of the codebase.

© 2018 Trail of Bits Ampleforth Assessment | 2

https://github.com/trailofbits/slither

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 4/31

Engagement Goals & Scope
The goal of the engagement was to evaluate the security of the Ampleforth protocol and
smart contracts and answer the following questions:

● Can attackers use leverage within the system to undermine the stability of the
currency?

● Does the design of the system introduce any risks at the architectural, code
dependency, or contract levels?

● Do the contracts perform calculations on Gons and Fragments correctly? Is there a
possibility of integer underflow, overflow, or rounding errors?

● Are there any issues with the contract upgrade mechanism?
● What is Trail of Bits’s guidance on deploying and operating the off-chain portions of

the codebase?

Coverage
We reviewed the UFragments ERC20 token and the MarketOracle contracts. This included
all of Ampleforth’s on-chain code and Solidity smart contracts. Off-chain portions of the
codebase such as the exchange rate feed were not covered in this assessment.

Contracts were reviewed for common Solidity flaws, such as integer overflows, re-entrancy
vulnerabilities, and unprotected functions. Furthermore, contracts were reviewed with
special consideration for the complex arithmetic calculations performed in the token as
well as the bespoke integer arithmetic library implementation used by the Ampleforth
token contract. Special care was taken to ensure that there was no possibility for loss of
funds due to arithmetic errors (e.g. , overflow, underflow, or rounding) or logic errors.

© 2018 Trail of Bits Ampleforth Assessment | 3

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 5/31

Project Dashboard
Application Summary

Name Ampleforth Protocol

Type ERC20 Token and Protocol

Platform Solidity

Engagement Summary

Dates November 5 th through 20 th , 2018

Method Whitebox

Consultants Engaged 2

Level of Effort 4 person-weeks

Vulnerability Summary

Total High Severity Issues 0

Total Medium Severity Issues 0

Total Low Severity Issues 4 ◼◼◼◼

Total Informational Severity Issues 2 ◼◼

Total Issues of Undetermined Severity 1 ◼

Total 7

Category Breakdown

Configuration 1 ◼

Data Validation 1 ◼

Patching 2 ◼◼

Undefined Behavior 3 ◼◼◼

Total 7

© 2018 Trail of Bits Ampleforth Assessment | 4

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 6/31

Recommendations Summary

Short Term
❑❑ Gracefully handle rebasing when no market sources are fresh. For example, leave
the exchange rate unchanged and solely apply the damping factor.

❑❑ Mitigate the effect of malicious or erroneous market sources. Consider capping the
reported exchange rate to that value in the volumeWeightedSum calculation. Also, consider
changing the value returned by MarketSources to be a uint128 .

❑❑ Upgrade to a newer version of ZeppelinOS as soon as possible. Zos-lib is deprecated.
This appears to have happened concurrently to this assessment. Confirm that all usage of
the old Zos-lib has been removed.

❑❑ Prevent reentrancy in market sources. Prevent the minimum rebasing time from
being zero. Ensure that rebase times are strictly increasing.

❑❑ Document market source removal. State all assumptions made by
removeSourceAtIndex , including the requirement that index always be strictly less than
_whitelist.length .

❑❑ Document smart contract upgrade procedures. Record the version of Solidity used for
the initial deployment and ensure that that same version of Solidity is used for all future
deployments. Implement all of the bullet points in the recommendations section of our
contract upgrade anti-patterns blog post .

❑❑ Include a diversity of market sources. Ensure that markets like �Y/�X and Compound
that allow for margin trading are included as market sources.

© 2018 Trail of Bits Ampleforth Assessment | 5

https://blog.trailofbits.com/2018/09/05/contract-upgrade-anti-patterns/

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 7/31

Long Term
❑❑ Investigate methods of calculating the aggregate volume that are less sensitive to
individual market sources’ output. Consider having MarketSources push their updates
to the MarketOracle at whatever rate they choose rather than relying on the MarketOracle
to poll. This would help resolve several findings.

❑❑ Improve unit test coverage. Edge cases like that of finding TOB-FRAG-001 could have
been revealed in testing.

❑❑ Revisit contract upgradability. Consider switching to a different contract upgrade
pattern, such as contract migrations .

❑❑ Research the incentives produced by having a predictable rebase mechanism that
is susceptible to arbitrage. Consider implementing more nuanced economic simulations
with agents that are capable of exploiting arbitrage.

❑❑ Consider additional ERC20 race condition mitigations. Improve documentation for
end-users to educate them about the ERC20 approve race condition.

❑❑ Integrate advanced security tools into your secure development lifecycle. Slither as
well as custom Echidna and Manticore scripts have been provided along with this report.

© 2018 Trail of Bits Ampleforth Assessment | 6

https://blog.trailofbits.com/2018/10/29/how-contract-migration-works/

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 8/31

Findings Summary
Title Type Severity

1 Rebasing will fail if no market sources are
fresh

Undefined
Behavior

Low

2 Malicious or erroneous MarketSource can
break rebasing

Data Validation Low

3 Zos-lib is deprecated Patching Informational

4 Possible reentrancy if the minimum
rebase interval is zero

Undefined
Behavior

Low

5 Market source removal is dangerous Undefined
Behavior

Informational

6 Contract upgrades can catastrophically
fail if the storage layout changes

Patching Low

7 Rebase predictability may make
Ampleforth a target for arbitrage

Configuration Undetermined

© 2018 Trail of Bits Ampleforth Assessment | 7

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 9/31

1. Rebasing will fail if no market sources are fresh
Severity: Low Difficulty: Low
Type: Undefined Behavior Finding ID: TOB-FRAG-001
Target: market‑oracle/contracts/MarketOracle.sol and

uFragments/contracts/UFragmentsPolicy.sol

Description
If no market oracles are fresh, then getPriceAnd24HourVolume() on line 57 of
MarketOracle.sol will revert due to division by zero.

 uint256 volumeSum = 0 ;

uint256 partialRate = 0 ;
 uint256 partialVolume = 0 ;

 bool isSourceFresh = false ;

 for (uint256 i = 0 ; i < _whitelist. length ; i ++) {

 (isSourceFresh, partialRate, partialVolume) = _whitelist[i]. getReport ();

 if (! isSourceFresh) {

 emit LogSourceExpired (_whitelist[i]);

 continue ;

 }

 volumeWeightedSum = volumeWeightedSum. add (partialRate. mul (partialVolume));

 volumeSum = volumeSum. add (partialVolume);

 }

 // No explicit fixed point normalization is done as dividing by volumeSum normalizes

 // to exchangeRate's format.

 uint256 exchangeRate = volumeWeightedSum. div (volumeSum);

Figure 1.1 : Division by zero in getPriceAnd24HourVolume()

This function is called when rebasing; therefore, rebasing will fail if there is not a fresh
oracle. If rebasing fails then the damping factor will not be applied (see
UFragmentsPolicy.sol line 82).

© 2018 Trail of Bits Ampleforth Assessment | 8

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 10/31

Exploit Scenario
There is no trading volume over the past 24 hours reported by any market oracle; so there
are no fresh oracles. This can happen either naturally or, for example, if the token is
paused but rebasing is not paused. This will cause a revert during rebasing, the damping
factor will not be applied, and the UFragments contract will fail to self-stabilize.

Recommendation
In the short term, add a check during rebasing to gracefully handle this situation. For
example, leave the exchange rate unchanged and solely apply the damping factor.

In the long term, improve unit tests to cover edge cases such as this.

© 2018 Trail of Bits Ampleforth Assessment | 9

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 11/31

2. Malicious or erroneous MarketSource can break rebasing
Severity: Low Difficulty: Low
Type: Data Validation Finding ID: TOB-FRAG-002
Target: market‑oracle/contracts/MarketOracle.sol

Description
If MarketSource � ever reports a partialRate , �

� , and partialVolume , �
� , such that

�
� × �

� ≥ 2 256 - ∑
�≠� �

� × �
� ,

then the incremental summation of volumeWeightedSum (q.v. Figure 1.1) will cause a revert
due to integer overflow.

This is called within rebase , like issue TOB-FRAG-001 .

Similarly, this issue can occur if a MarketSource ever reverts when polled by the
MarketOracle .

This finding is classified as having low severity because once a malicious or erroneous
market source is detected, it can be removed from the whitelist. However, this would
require continuous monitoring and action on the part of the owner.

Exploit Scenario
A market source returns a very large value for partialRate and/or partialVolume . This
causes a revert in the calculation of volumeWeightedSum and thereby prevents rebasing.
Self-stabilization through rebasing will not occur until the offending market source is
removed from the whitelist.

Recommendation
The maximum exchange rate is hard-coded to roughly 2 80 in the monetary policy, so in the
short term consider capping the reported exchange rate to that value in the
volumeWeightedSum calculation. Also, consider changing the value returned by
MarketSources to be a uint128 .

In the long term, investigate methods of calculating the aggregate volume that are less
sensitive to individual market sources’ output. For example, consider having
MarketSources push their updates to the MarketOracle at whatever rate they choose
rather than relying on the MarketOracle to poll.

© 2018 Trail of Bits Ampleforth Assessment | 10

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 12/31

3. Zos-lib is deprecated
Severity: Informational Difficulty: Low
Type: Patching Finding ID: TOB-FRAG-003
Target: uFragments

Description
The ZeppelinOS Library (zos‑lib) was recently deprecated. Users should migrate to the
zos library .

This finding is classified under informational severity because there are no known zos‑lib
vulnerabilities exercised in the uFragments code, and we have learned that uFragments will
soon be migrating away from this deprecated library .

Exploit Scenario
A vulnerability in zos‑lib is discovered but goes unpatched because it has been
deprecated.

Recommendation
Upgrade to a newer version of ZeppelinOS as soon as possible.

© 2018 Trail of Bits Ampleforth Assessment | 11

https://github.com/zeppelinos/zos-lib
https://github.com/zeppelinos/zos-lib
https://github.com/zeppelinos/zos-lib
https://github.com/zeppelinos/zos/tree/master/packages/lib#readme
https://github.com/zeppelinos/zos/tree/master/packages/lib#readme
https://github.com/frgprotocol/uFragments/pull/98
https://github.com/frgprotocol/uFragments/pull/98

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 13/31

4. Possible reentrancy if the minimum rebase interval is zero
Severity: Low Difficulty: Medium
Type: Undefined Behavior Finding ID: TOB-FRAG-004
Target: uFragments

Description
If the minimum rebase time interval (_minRebaseTimeIntervalSec) is set to zero, then a
market source can reentrantly call UfragmentPolicy.rebase . This will cause the rebase to
occur twice, but the second time with an epoch which is lower than the first.

The severity of this finding is classified as low because it does not appear to result in any
security vulnerabilities unless an external observer depends on the monotonicity of epoch
events.

Exploit Scenario
_minRebaseTimeIntervalSec is set to zero seconds. A rebase is initiated, which executes:

(exchangeRate, volume) = _marketOracle.getPriceAnd24HourVolume();

leading to a call getReport on each source. Alice’s source’s implementation of getReport
makes a reentrant call to UfragmentPolicy.rebase . As a result,

_uFrags.rebase(_epoch, supplyDelta)

(UfragmentPolicy.rebase(epoch, supplyDelta))

is called two times, but the second time with an epoch which is less than the first. This will
cause the LogRebase events to be emitted with epochs out of sequence.

Recommendation
In the short term, this vulnerability can be addressed by preventing
_minRebaseTimeIntervalSec from being zero. In addition, ensure that rebase times are
strictly increasing by changing the inequality in

require(_lastRebaseTimestampSec.add(_minRebaseTimeIntervalSec) <= now);

to

require(_lastRebaseTimestampSec.add(_minRebaseTimeIntervalSec) < now);

in UfragmentPolicy.rebase .

In the long term, consider having MarketSources push their updates to the MarketOracle
at whatever rate they choose rather than relying on the MarketOracle to poll, similarly to
the recommendation from TOB-FRAG-002 .

© 2018 Trail of Bits Ampleforth Assessment | 12

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 14/31

5. Market source removal is dangerous
Severity: Informational Difficulty: Low
Type: Undefined Behavior Finding ID: TOB-FRAG-005
Target: market‑oracle/contracts/MarketOracle.sol

Description
The removeSourceAtIndex private function makes a number of assumptions about the
state of the contract. If it is ever called when any of these assumptions are invalid, then
there will be serious security implications.

 /**

 * @param index Index of the MarketSource to be removed from the whitelist.

 */

 function removeSourceAtIndex (uint256 index)

 private

 {

 emit LogSourceRemoved (_whitelist[index]);

 if (index != _whitelist. length ‑ 1) {

 _whitelist[index] = _whitelist[_whitelist. length ‑ 1];

 }

 _whitelist. length ‑‑ ;

 }

Figure 5.1 : Unchecked index argument and whitelist size.

The removeSourceAtIndex function assumes that _whitelist is non-empty. If it is called
when _whitelist is empty, the _whitelist array length will silently underflow.

Similarly, removing a source with an index greater than or equal to _whitelist.length will
silently remove the last element in the whitelist.

All current usage of this function appears to be safe, which is why this finding has
informational severity.

Exploit Scenario
Underflowing the whitelist length allows anyone with write access to _whitelist to
overwrite any storage address within the contract. A future refactor of the code could easily
expose this vulnerability.

Recommendation
Document this behavior in the function documentation string, and/or by explicitly adding a
check, e.g. , with require(index < _whitelist.length) .

© 2018 Trail of Bits Ampleforth Assessment | 13

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 15/31

6. Contract upgrades can catastrophically fail if the storage layout changes
Severity: Low Difficulty: Low
Type: Patching Finding ID: TOB-FRAG-006
Target: All upgradable contracts

Description
The contracts in Ampleforth use the ZeppelinOS library for upgradability. Due to the way in
which the library implements upgrades, the storage layout of the contracts must not
change between deployments. Unfortunately, the Solidity compiler can and does often
change its storage layout between versions. Any change in the state variables (new
variables, changes of type, &c.) will require a thorough assessment before upgrading.
Extreme care must be placed in implementing inheritance, as it may also affect the storage
layout.

This finding does not represent a current vulnerability in the code. However, a mismanaged
upgrade can easily and immediately lead to a broken contract, constituting a high-severity
issue. This finding is classified as having low severity because Solidity does not have a good
track record of being backward compatible, and it is becoming increasingly hard to install
older versions of the compiler .

Exploit Scenario
A newer version of solc is used to compile a contract upgrade, causing the storage layout
to change. This will cause the contract to silently, catastrophically fail upon upgrade.

Recommendation
In the short term, document this vulnerability in the Ampleforth upgrade procedures. Also
record the version of Solidity used for the initial deployment and ensure that that same
version of Solidity is used for all future deployments. Implement all of the bullet points in
the recommendations section of our contract upgrade anti-patterns blog post .

In the long term, consider switching to a different contract upgrade pattern, such as
contract migrations .

© 2018 Trail of Bits Ampleforth Assessment | 14

https://github.com/ethereum/homebrew-ethereum/issues/191#issuecomment-438581184
https://github.com/ethereum/homebrew-ethereum/issues/191#issuecomment-438581184
https://blog.trailofbits.com/2018/09/05/contract-upgrade-anti-patterns/
https://blog.trailofbits.com/2018/10/29/how-contract-migration-works/

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 16/31

7. Rebase predictability may make Ampleforth a target for arbitrage
Severity: Undetermined Difficulty: Medium
Type: Configuration Finding ID: TOB-FRAG-007
Target: the Ampleforth token

Description
There are increasingly many options for traders to speculate on and profit from swings in
ERC20 token values. Exchanges like �Y/�X offer instruments for margin trading and
short-selling. Since a third-party observer can almost perfectly predict the exchange rate
reported by the market oracle, and since the rebasing process is deterministically
predictable, then anyone can predict the value Ampleforth will have after a rebase. While
the Ampleforth whitepaper does make an argument against high-frequency rebasing
(cf. section 8.3), there is no discussion of the implications of allowing people enough time to
exploit arbitrage between rebasings given that the outcome will be deterministic.

Exploit Scenario
Alice queries Ampleforth’s market oracles and determines that the next rebase will
drastically decrease the value of Ampleforth. Therefore, she borrows Ampleforth tokens
from a market like Compound , immediately sells them, and then buys them back at a lower
price after the next rebase. Granted, this specific market action will likely cause the value of
Ampleforth to stabilize, disincentivizing further arbitrage. However, the macro effects of the
incentive and ability for arbitrage do not appear to be well understood.

Recommendation
In the short term, ensure that markets like �Y/�X and Compound that allow for margin
trading are included as market sources. Requiring the market sources to push their
updates rather than having the market oracle poll them—as recommended in
TOB-FRAG-002 and TOB-FRAG-004 —might also help to prevent the predictability of
rebasing, since third parties would not necessarily be able to query the market sources
directly.

In the long term, further investigate and model the incentives produced by having a
predictable rebase mechanism that is susceptible to arbitrage. For example, consider
implementing more nuanced economic simulations with agents that are capable of
exploiting arbitrage.

© 2018 Trail of Bits Ampleforth Assessment | 15

https://dydx.exchange/
https://compound.finance/

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 17/31

A. Vulnerability Classifications
Vulnerability Classes

Class Description

Access Controls Related to authorization of users and assessment of rights

Auditing and Logging Related to auditing of actions or logging of problems

Authentication Related to the identification of users

Configuration Related to security configurations of servers, devices or software

Cryptography Related to protecting the privacy or integrity of data

Data Exposure Related to unintended exposure of sensitive information

Data Validation Related to improper reliance on the structure or values of data

Denial of Service Related to causing system failure

Error Reporting Related to the reporting of error conditions in a secure fashion

Arithmetic Related to arithmetic calculations

Patching Related to keeping software up to date

Session Management Related to the identification of authenticated users

Timing Related to race conditions, locking or order of operations

Undefined Behavior Related to undefined behavior triggered by the program

© 2018 Trail of Bits Ampleforth Assessment | 16

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 18/31

Severity Categories

Severity Description

Informational The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is
important

Medium Individual user’s information is at risk, exploitation would be bad for
client’s reputation, moderate financial impact, possible legal
implications for client

High Large numbers of users, very bad for client’s reputation, or serious
legal or financial implications

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may
need to know extremely complex technical details or must discover
other weaknesses in order to exploit this issue

© 2018 Trail of Bits Ampleforth Assessment | 17

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 19/31

B. Code Quality Recommendations
The following recommendations are not associated with specific vulnerabilities. However,
they enhance code readability and may prevent the introduction of vulnerabilities in the
future.

General Recommendations
● Follow the Solidity naming convention guide . Following a standard naming

convention helps the review of the code. In addition, most style guides that
advocate for prepending an underscore before certain variables do so for private
variables. However, there are several instances in the Ampleforth codebase in which
a leading underscore is used for a public variable:

○ MarketSource : _name and _reportExpirationTimeSec
○ MarketOracle : _whitelist
○ UFragmentsPolicy : _uFrags , _marketOracle , _deviationThreshold ,

_rebaseLag , _minRebaseTimeIntervalSec , _lastRebaseTimestampSec ,
_epoch

○ DetailedERC20 : _name , _symbol , _decimals
○ UFragments : _monetaryPolicy , _rebasePaused , _tokenPaused

We presume this convention is to indicate variables that are only used internally,
but have public visibility for some reason (e.g. , debugging or transparency). If this
convention is to stand, it should be memorialized somewhere in the repository so
future developers can maintain consistency.

uFragments/contracts/UFragments.sol
● Incorrect naming in comments. The approve function’s documentation string

mentions that two other functions, “ increaseApproval ” and “ decreaseApproval ”,
should be used instead, while their real names are actually “ increaseAllowance ”
and “ decreaseAllowance ”.

© 2018 Trail of Bits Ampleforth Assessment | 18

https://solidity.readthedocs.io/en/v0.4.24/style-guide.html

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 20/31

C. ERC20 approve race condition
The Ampleforth token is exposed to the well-known ERC20 race condition. Code comments
and the existence of allowance incrementing and decrementing functions suggest that at
least one of the developers is aware of this vulnerability. This appendix reviews the issue,
describes the impact, and outlines mitigations.

Issue Description
Ampleforth conforms to the ERC20 token standard, which contains an unavoidable race
condition. Ampleforth's compliance with ERC20 inherently introduces this race condition.
This race condition is only exploitable by sophisticated attackers, but could result in loss of
funds for Ampleforth users.

It is not a smart contract correctness bug, but rather a consequence of the API design and
Ethereum’s unique execution model. The bug is quite subtle and difficult to understand.
Normally, people think of the transaction model as completely separate from the code it
executes, but this bug requires a nuanced understanding of their interaction to precisely
understand its impact.

Specifically, the ERC20 standard requires two functions, approve and transferFrom , which
allow users to designate other trusted parties to spend funds on their behalf. Calls to any
Ethereum function, including these, are visible to third parties prior to confirmation
on-chain. In addition to these calls’ visibility prior to confirmation, a sophisticated attacker
can “front-run” them and insert their own transactions to occur before the observed calls.

The approve function is defined to take an address and an amount, and set that address’s
“allowance” to the specified amount. Then, that address can call transferFrom and move
up to their allowance of tokens as if they were the owners. Here’s the issue: approve is
specified to be idempotent. It sets the approval to a new value regardless of its prior value,
it doesn’t modify the allowance.

Exploit Scenario
In a scenario where a malicious party is approved for some amount and then the
approving party wants to update the amount, the malicious party could end up with
significantly more funds than the approving party intended.

Suppose Alice, a non-malicious user, has previously approved Bob, a malicious actor, for
100 Ampleforth tokens. She wishes to increase his approval to 150. Bob observes the
approve(bob, 100) transaction prior to its confirmation and front-runs it with a
transferFrom(alice, bob, 100) . Then, as soon as the new approval is in, his allowance is
set to 150 and he can call transferFrom(alice, bob, 150) .

© 2018 Trail of Bits Ampleforth Assessment | 19

https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 21/31

In this scenario, Alice believes she’s setting Bob’s allowance to 150, and he can only spend
150 tokens. Due to the race condition, Bob can spend 250. This is effectively a theft of
tokens. Bob can then use these stolen tokens at an exchange that accepts Ampleforth.
Even if Ampleforth directly modifies balances to refund Alice her tokens, the participating
exchange is left with the liability since Bob has already traded the Ampleforth tokens for
another cryptocurrency.

Likelihood of Exploitation
As mentioned above, only sophisticated attackers can exploit this bug, and only in very
specific circumstances. The attack requires dedicated infrastructure to monitor and quickly
react to transactions. Performing it consistently may require collaboration with an
Ethereum mining pool. In addition, it is only possible when the attacker has already been
approved for some allowance. Even then, the value an attacker can steal is limited (it
cannot be more than the initial allowance).

Due to the degree of effort required, the minimal reward, and the unlikely circumstances
required (e.g., the vast majority of ERC20 token holders never use approve and
transferFrom in the first place, let alone with untrusted parties), Trail of Bits is unaware of
this bug ever having been exploited in the wild. It simply has not proven profitable to
exploit. It has been widely known for quite some time now and most large tokens elect to
remain standards-compliant rather than mitigate it.

Nonetheless, any issue that could result in loss of funds as well as loss of confidence in
Ampleforth is very important, and must be addressed seriously and comprehensively to
the extent possible. Just because it has not been exploited in the past does not mean it
never will be in the future. As attackers grow more serious and well-resourced, bugs this
subtle and difficult to exploit merit thorough consideration.

Available Mitigations
Ampleforth has already implemented our suggested mitigation: adding increaseApproval
and decreaseApproval functions, which are not idempotent and, therefore, do not suffer
the above issue. Users who exclusively use these functions will not be vulnerable.

Alternatively, users can ensure that when they update an allowance, they either set it to 0
or verify that it was 0 prior to the update. In the above example, the user would call
approve(0) then approve(150) instead of just the latter.

Notably, both outlined mitigations require users to use the API with some care. The
solution is not just modifying code, but creating and publishing documentation. Since this
issue is in the standard and Trail of Bits cannot recommend that Ampleforth remove it
entirely (by modifying the approve function), it is critical that users of this functionality are
informed of the risk and understand the best practices for avoiding it.

© 2018 Trail of Bits Ampleforth Assessment | 20

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 22/31

D. Slither
Trail of Bits has included our Solidity static analyzer, Slither, with this report. Slither works
on the Abstract Syntax Tree (AST) generated by the Solidity compiler and detects some of
the most common smart contract security issues, including:

● The lack of a constructor
● The presence of unprotected functions
● Uninitialized variables
● Unused variables
● Functions declared as constant that change the state
● Deletion of a structure containing a mapping

Slither is an unsound static analyzer and may report false positives. The lack of proper
support for inheritance and some object types (such as arrays) may lead to false positives.

Usage
Launch the analysis on the Soldity file:

$ python /path/to/slither.py file.sol

Ensure that import dependencies and libraries, such as OpenZepplin, can be found by the
solc compiler in the same directory.

© 2018 Trail of Bits Ampleforth Assessment | 21

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 23/31

E. Echidna property-based testing
Trail of Bits used Echidna, our property-based testing framework, to find logic errors in the
Solidity components of Ampleforth.

During the engagement, Trail of Bits produced a custom Echidna testing harness for
Ampleforth's ERC20 token. This harness initializes the token and creates an appropriate
market oracle. It then executes a random sequence of API calls from different unprivileged
actors in an attempt to cause anomalous behavior.

The harness includes tests of ERC20 invariants (e.g. , token burn, balanceOf correctness,
&c.), ERC20 edge cases (e.g. , transferring tokens to one’s self and transferring zero tokens),
as well as a test that Ampleforth’s gons-per-fragment accounting is always correct.

To add more tests at any point, simply add regular Echidna tests (functions with names
beginning echidna_ , taking no arguments, and returning a boolean) to the contracts ending
in _test , and the binary will detect and evaluate them as well. Similarly, you can modify or
remove any existing tests without having to change the executable.

© 2018 Trail of Bits Ampleforth Assessment | 22

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 24/31

F. Manticore formal verification
We reviewed the feasibility of formally verifying Ampleforth's Solidity contracts with
Manticore , our simple, open-source dynamic EVM analysis tool that takes advantage of
symbolic execution.

Symbolic execution allows us to explore program behavior in a broader way than classical
testing methods, such as fuzzing. For contracts like SafeMathInt and UInt256Lib that do
not require complex initialization or interactions between multiple accounts, Manticore can
automatically analyze for common vulnerabilities such as arithmetic underflow and
overflow, lost and stolen ether, etc. We have analyzed such contracts in Ampleforth and
discovered no latent bugs with Manticore’s automated detectors.

For contracts like UFragments that require more complex initialization, custom Manticore
scripts are required to initialize the scenario. All such scripts have been delivered to
Ampleforth. They test that the whitelist cannot be corrupted or surreptitiously modified
and that the primary accounting invariant of the UFragments contract always holds:

_gonsPerFragment == TOTAL_GONS.div(_totalSupply)

© 2018 Trail of Bits Ampleforth Assessment | 23

https://github.com/trailofbits/manticore

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 25/31

G. Hosting Provider Account Security Controls
Trail of Bits has identified controls that should be considered for Ampleforth’s off-chain
hosting provider accounts:

1. If the hosting provider allows it, ensure the account has at least two payment
methods available for billing. This helps to avoid situations where a card is unable to
be billed against, resulting in the account being locked.

2. Ensure that the account is accessible to multiple Ampleforth administrators, such
that the departure, theft, or loss of a single user cannot impact the team’s ability to
respond to security-relevant emails.

3. Ensure the hosting provider account has no single point of failure in regard to
account access. At least two people should be able to access the account controlling
the hosted instances.

4. Verify the access controls (IAM) for each hosting provider to ensure appropriate
hardening.

Trail of Bits recommends that Ampleforth define the processes of performing Disaster
Recovery and Incident Response across both their on-chain and off-chain infrastructure.
Ampleforth should practice these newly defined Disaster Recovery and Incident Response
processes to prevent error in a real-life application. An example of an Incident Response
framework can be seen in the openly available Pager Duty documentation .

Additionally, the NIST 800 series includes NIST 800-61 , which provides a series of guidelines
in order to understand processes and procedures for detecting and responding to security
incidents.

It is recommended that Ampleforth define SLAs to help identify areas of concern, and
reduce risks in the event Disaster Recovery or Incident Response processes must be
performed.

For general key storage in AWS, we recommend using the Key Management Service (KWS)
and/or the Systems Manager Parameter Store.

© 2018 Trail of Bits Ampleforth Assessment | 24

https://response.pagerduty.com/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 26/31

H. SSH Security Checklist
The off-chain portions of the Ampleforth protocol such as the exchange rate feed will likely
require hosting. We anticipate interaction with production instances will be performed over
SSH. This section provides a simple audit checklist for configuring SSH in the most secure
fashion possible.

● If possible, simply use the Mozilla SSH Configuration suggestions, and disable
unneeded features.

● Enable key-based authentication by adding “ AuthenticationMethods publickey ”
and “ PubkeyAuthentication yes ” to /etc/ssh/sshd_conf .

● Disable login by the “ root ” user with “ PermitRootLogin no ”.
● Fully disable password authentication with “ PasswordAuthentication no ”.
● Use a defined set of AllowUsers that can login to the SSH server, and use DenyUsers

for all other users of the system.
● Set idle timeouts with “ ClientAliveInterval 300 ” (300 seconds, or 5 minutes) and

“ ClientAliveCountMax 0 ”.
● Wherever possible, use ED25519 keys for both the server and the client:

○ On the server, this can be enabled with “ HostKey
/etc/ssh/ssh_host_ed25519_key ”

○ On the client, an ED25519 key can be generated by specifying “ed25519” as
the argument to the “-t” option of “ssh-keygen”: “ ssh‑keygen ‑t ed25519 ”.

● Set the “ LogLevel ” to “ Verbose ” in order to log most user actions within SSH.
● Set a maximum login threshold with “ MaxAuthTries 1 ”, and audit the server for

authentication failures.
● Utilize a system such as Fail2Ban or DenyHosts to reject hosts that attempt and fail

to authenticate multiple times.

Other supplementary controls can be added to the SSH server to increase security, such as:

● Use Multi-Factor Authentication (MFA) such as Duo or Yubico .
● Configure short-lived SSH certificates such as with BLESS or ussh-pam .
● Require a second person for all authenticated options , generally called the

“two-person rule.”

© 2018 Trail of Bits Ampleforth Assessment | 25

https://infosec.mozilla.org/guidelines/openssh
https://www.fail2ban.org/wiki/index.php/Main_Page
https://github.com/denyhosts/denyhosts
https://duo.com/docs/duounix
https://developers.yubico.com/PGP/SSH_authentication/
https://eng.lyft.com/blessing-your-ssh-at-lyft-a1b38f81629d
https://github.com/uber/pam-ussh
https://github.com/Argonne-National-Laboratory/Pam-2man-Auth

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 27/31

I. Personal Security Guidelines
Online Services

1. Set up 2-factor authentication (2FA) on your G-Suite account. Use the Google
Authenticator app or a U2F Security Key . Avoid the use of SMS as a second factor.

2. Run a Security Checkup on your personal Google account.
3. Set up 2FA on your Apple ID , Github , Wordpress.com (the blog), and JustWorks .
4. Turn on Find My iPhone . You’ll be able to recover your phone if lost or stolen, or

wipe the phone remotely if you can’t recover it.

Laptop

1. Change your default browser to Chrome. Install HTTPS Everywhere , Password Alert ,
and either uBlock Origin or Ghostery .

2. Use a unique Chrome Profile for every identity you have (work, personal, etc). Do
not sign into multiple accounts on the same browser instance.

3. Turn on full-disk encryption with FileVault or other full-disk encryption. If on Linux,
make sure you encrypt the whole desk and not only your home directory.

4. Install BlockBlock on your Mac. It will prevent new applications from silently
installing themselves to run at startup.

Phone

1. Call your cell phone provider and add additional authentication to your account:
a. Instructions for AT&T , T-Mobile , Verizon
b. Background from Forbes , the FTC , and Krebs

2. Set an alphanumeric passcode on your iPhone. 4 and 6-digit PINs are trivial to brute
force with commonly available forensic software .

3. Android phones are allowed but discouraged. Use only Google-branded devices
running the latest major version of Android. All others are prohibited from holding
corporate data.

© 2018 Trail of Bits Ampleforth Assessment | 26

https://www.google.com/landing/2step/
https://www.google.com/landing/2step/
https://www.yubico.com/product/yubikey-4-series/#yubikey-4c-nano
https://www.yubico.com/product/yubikey-4-series/#yubikey-4c-nano
https://myaccount.google.com/security-checkup
https://myaccount.google.com/security-checkup
https://support.apple.com/en-us/HT204915
https://support.apple.com/en-us/HT204915
https://help.github.com/articles/securing-your-account-with-two-factor-authentication-2fa/
https://help.github.com/articles/securing-your-account-with-two-factor-authentication-2fa/
https://en.support.wordpress.com/security/two-step-authentication/
https://en.support.wordpress.com/security/two-step-authentication/
http://help.justworks.com/customer/en/portal/articles/2488740-two-factor-authentication
http://help.justworks.com/customer/en/portal/articles/2488740-two-factor-authentication
https://support.apple.com/explore/find-my-iphone-ipad-mac-watch
https://support.apple.com/explore/find-my-iphone-ipad-mac-watch
https://chrome.google.com/webstore/detail/https-everywhere/gcbommkclmclpchllfjekcdonpmejbdp?hl=en
https://chrome.google.com/webstore/detail/https-everywhere/gcbommkclmclpchllfjekcdonpmejbdp?hl=en
https://chrome.google.com/webstore/detail/password-alert/noondiphcddnnabmjcihcjfbhfklnnep?hl=en
https://chrome.google.com/webstore/detail/password-alert/noondiphcddnnabmjcihcjfbhfklnnep?hl=en
https://chrome.google.com/webstore/detail/ublock-origin/cjpalhdlnbpafiamejdnhcphjbkeiagm?hl=en
https://chrome.google.com/webstore/detail/ublock-origin/cjpalhdlnbpafiamejdnhcphjbkeiagm?hl=en
https://chrome.google.com/webstore/detail/ghostery/mlomiejdfkolichcflejclcbmpeaniij?hl=en
https://chrome.google.com/webstore/detail/ghostery/mlomiejdfkolichcflejclcbmpeaniij?hl=en
https://support.google.com/chrome/answer/2364824?co=GENIE.Platform%3DDesktop&hl=en
https://support.google.com/chrome/answer/2364824?co=GENIE.Platform%3DDesktop&hl=en
https://support.apple.com/en-us/HT204837
https://support.apple.com/en-us/HT204837
https://objective-see.com/products/blockblock.html
https://objective-see.com/products/blockblock.html
https://www.att.com/esupport/article.html#!/wireless/KM1051397
https://www.att.com/esupport/article.html#!/wireless/KM1051397
https://www.t-mobile.com/news/unauthorized-porting-protecting-your-account
https://www.t-mobile.com/news/unauthorized-porting-protecting-your-account
https://www.verizonwireless.com/support/account-pin-faqs/
https://www.verizonwireless.com/support/account-pin-faqs/
http://fortune.com/2017/08/22/bitcoin-coinbase-hack/
http://fortune.com/2017/08/22/bitcoin-coinbase-hack/
https://www.ftc.gov/news-events/blogs/techftc/2016/06/your-mobile-phone-account-could-be-hijacked-identity-thief
https://www.ftc.gov/news-events/blogs/techftc/2016/06/your-mobile-phone-account-could-be-hijacked-identity-thief
https://krebsonsecurity.com/2018/02/how-to-fight-mobile-number-port-out-scams/
https://krebsonsecurity.com/2018/02/how-to-fight-mobile-number-port-out-scams/
https://www.imore.com/how-to-secure-iphone-ipad-strong-alphanumeric-password
https://www.imore.com/how-to-secure-iphone-ipad-strong-alphanumeric-password
https://motherboard.vice.com/en_us/article/59jq8a/how-to-make-a-secure-iphone-passcode-6-digits
https://motherboard.vice.com/en_us/article/59jq8a/how-to-make-a-secure-iphone-passcode-6-digits

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 28/31

Universal 2nd Factor (U2F) Setup
Obtain the necessary prerequisites:

● Buy one Yubikey 5 Nano or a Yubikey 5C Nano , depending on your laptop
configuration. These are permanently insertable and should remain in your laptop
at all times.

● Buy one Feitian Multipass . These are accessible over NFC and Bluetooth LE and
enable your phone to use U2F. These should go on your keychain, like any other key
you own.

● Install the Google Smart Lock on your iPhone. This enables your iPhone to
communicate with the Feitian Multipass over NFC, avoiding the hassle of Bluetooth
entirely.

Disable the static password on the Yubikey. Yubikeys are more than simple U2F keys. They
have “slots” that run different authenticators. You should disable these applications so the
Yubikey only performs U2F and nothing else.

1. Download the Yubikey Personalization Tool
2. Click Tools
3. Click “Delete Configuration”
4. Click Slot 1, then click Delete

Now, add the two U2F keys to your Google account:
https://myaccount.google.com/signinoptions/two-step-verification

Note the Feitian Multipass will only connect through your desktop when plugged in over a
USB cable. Use the included USB cable to enroll it in your account.

Consider setting up U2F on your personal Github, Facebook, and Google accounts, as well
as any other sites that support it: https://www.yubico.com/solutions/#all

Here is what your 2-Step Verification screen should look like when complete.

● Two Security Keys, one wired and one wireless
● Google Prompt for applications that do not support U2F (e.g., Apple Mail.app)
● Backups code stored in a safe location offline
● No SMS or TOTP (phishable) authenticators in use

© 2018 Trail of Bits Ampleforth Assessment | 27

https://www.yubico.com/product/yubikey-5-nano/#yubikey-5-nano
https://www.yubico.com/product/yubikey-5c-nano/#yubikey-5c-nano
https://www.amazon.com/Feitian-MultiPass-FIDO-Security-Key/dp/B01LYV6TQM
https://www.amazon.com/Feitian-MultiPass-FIDO-Security-Key/dp/B01LYV6TQM
https://itunes.apple.com/us/app/google-smart-lock/id1152066360?mt=8
https://itunes.apple.com/us/app/google-smart-lock/id1152066360?mt=8
https://www.yubico.com/products/services-software/download/yubikey-personalization-tools/
https://www.yubico.com/products/services-software/download/yubikey-personalization-tools/
https://myaccount.google.com/signinoptions/two-step-verification
https://myaccount.google.com/signinoptions/two-step-verification
https://myaccount.google.com/signinoptions/two-step-verification
https://www.yubico.com/solutions/#all
https://www.yubico.com/solutions/#all

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 29/31

Figure I.1: Example secure configuration of a Google account

© 2018 Trail of Bits Ampleforth Assessment | 28

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 30/31

Yubikey Personalization Tool
Follow these steps to delete the static password on your Yubikey.

Figure I.2: Select The “Tools” tab, click “Delete Configuration”

© 2018 Trail of Bits Ampleforth Assessment | 29

1/9/2019 Fragments Final Public Report - Google Docs

https://docs.google.com/document/d/1wf0BVnoTY2US3OM_ySv3O1hlgPnoIoel8lSIXPluTbA/edit# 31/31

Figure I.3: Select “Configuration Slot 1” (this contains the static password) and click “Delete”

© 2018 Trail of Bits Ampleforth Assessment | 30

