
Public

SMART CONTRACT AUDIT REPORT

for

BORINGDAO

Prepared By: Shuxiao Wang

Hangzhou, China
Dec. 28, 2020

1/25 PeckShield Audit Report #: 2020-89

sxwang@peckshield.com

Public

Document Properties

Client BoringDAO
Title Smart Contract Audit Report
Target BoringDAO
Version 1.0
Author Xudong Shao
Auditors Xudong Shao, Chiachih Wu, Huaguo Shi
Reviewed by Jeff Liu
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 Dec. 28, 2020 Xudong Shao Final Release

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/25 PeckShield Audit Report #: 2020-89

Public

Contents

1 Introduction 5
1.1 About BoringDAO . 5
1.2 About PeckShield . 6
1.3 Methodology . 6
1.4 Disclaimer . 8

2 Findings 10
2.1 Summary . 10
2.2 Key Findings . 11

3 Detailed Results 12
3.1 Business Logic Error in unpauseSatellitePool() . 12
3.2 Missed Sanity Checks in Liquidation:pause() . 13
3.3 Unsafe Ownership Transition in SatellitePool . 14
3.4 Unused Interfaces . 15
3.5 Weak Randomness in Tunnel::burn() . 16

4 Conclusion 18

5 Appendix 19
5.1 Basic Coding Bugs . 19

5.1.1 Constructor Mismatch . 19
5.1.2 Ownership Takeover . 19
5.1.3 Redundant Fallback Function . 19
5.1.4 Overflows & Underflows . 19
5.1.5 Reentrancy . 20
5.1.6 Money-Giving Bug . 20
5.1.7 Blackhole . 20
5.1.8 Unauthorized Self-Destruct . 20
5.1.9 Revert DoS . 20

3/25 PeckShield Audit Report #: 2020-89

Public

5.1.10 Unchecked External Call . 21
5.1.11 Gasless Send . 21
5.1.12 Send Instead Of Transfer . 21
5.1.13 Costly Loop . 21
5.1.14 (Unsafe) Use Of Untrusted Libraries . 21
5.1.15 (Unsafe) Use Of Predictable Variables . 22
5.1.16 Transaction Ordering Dependence . 22
5.1.17 Deprecated Uses . 22

5.2 Semantic Consistency Checks . 22
5.3 Additional Recommendations . 22

5.3.1 Avoid Use of Variadic Byte Array . 22
5.3.2 Make Visibility Level Explicit . 23
5.3.3 Make Type Inference Explicit . 23
5.3.4 Adhere To Function Declaration Strictly . 23

References 24

4/25 PeckShield Audit Report #: 2020-89

Public

1 | Introduction

Given the opportunity to review the BoringDAO design document and related smart contract source
code, we outline in this report our systematic approach to evaluate potential security issues in the
smart contract implementation, expose possible semantic inconsistencies between smart contract code
and design document, and provide additional suggestions or recommendations for improvement. Our
results show that the given version of smart contracts can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About BoringDAO

BoringDAO is a decentralized bridge that connects multiple blockchains, and it offers users a way
to transfer crypto tokens across different blockchains. Therefore, BoringDAO could maximize the
utilization rate of various crypto assets, such as BTC, XRP, BCH, etc, and bring these tokens to the
DeFi applications on Ethereum.

The basic information of the BoringDAO is as follows:

Table 1.1: Basic Information of BoringDAO

Item Description
Issuer BoringDAO

Website https://boringdao.com/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report Dec. 28, 2020

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit:

• https://github.com/BoringDAO/boringDAO-contract (8b381c3)

5/25 PeckShield Audit Report #: 2020-89

Public

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/BoringDAO/boringDAO-contract (f806935)

1.2 About PeckShield

PeckShield Inc. [12] is a leading blockchain security company with the goal of elevating the security,
privacy, and usability of the current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [7]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the

6/25 PeckShield Audit Report #: 2020-89

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/25 PeckShield Audit Report #: 2020-89

Public

contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [6], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this audit does not give any warranties on finding all possible security issues of the given
smart contract(s), i.e., the evaluation result does not guarantee the nonexistence of any further
findings of security issues. As one audit-based assessment cannot be considered comprehensive, we
always recommend proceeding with several independent audits and a public bug bounty program to
ensure the security of smart contract(s). Last but not least, this security audit should not be used
as investment advice.

8/25 PeckShield Audit Report #: 2020-89

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

9/25 PeckShield Audit Report #: 2020-89

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the design and implementation of the BoringDAO

protocol. During the first phase of our audit, we study the smart contract source code and run our
in-house static code analyzer through the codebase. The purpose here is to statically identify known
coding bugs, and then manually verify (reject or confirm) issues reported by our tool. We further
manually review business logics, examine system operations, and place DeFi-related aspects under
scrutiny to uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 1

Low 1

Informational 3

Total 5

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities that need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

10/25 PeckShield Audit Report #: 2020-89

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity
vulnerability, 1 low-severity vulnerability, and 3 informational recommendations.

Table 2.1: Key Audit Findings of BoringDAO

ID Severity Title Category Status
PVE-001 Medium Business Logic Error in unpauseSatel-

litePool()
Business Logic Fixed

PVE-002 Info. Missed Sanity Checks in Liquida-
tion:pause()

Business Logic Fixed

PVE-003 Info. Unsafe Ownership Transition in Satel-
litePool

Business Logic Fixed

PVE-004 Info. Unused Interfaces Coding Practices Fixed
PVE-005 Low Weak Randomness in Tunnel::burn() Business Logic Fixed

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

11/25 PeckShield Audit Report #: 2020-89

Public

3 | Detailed Results

3.1 Business Logic Error in unpauseSatellitePool()

• ID: PVE-001

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: liquidation

• Category: Business Logic [5]

• CWE subcategory: CWE-841 [3]

Description

As a contingency plan, the dev team and trustees could pause the BoringDAO system when there is
an emergency through the pause() function in the Liquidation contract. Typically, pausing the whole
system comes with paused Satellite pools. If there are more than 2

3 trustees reach an agreement
with each others, the unpauseSatellitePool() could be used to unpause a paused Satellite pool.
Specifically, as shown in the following code snippet, line 101 increments the unpausePoolConfirmCount

[pool] whenever a trustee invokes unpauseSatellitePool(). Later on, in line 104, the pool is paused
when the unpausePoolConfirmCount[pool] reaches the threshold.

95 f unc t i on u n p a u s e S a t e l l i t e P o o l (address poo l) pub l i c on l yT ru s t e e {
96 r equ i r e (systemPause == true , "Liquidation :: unpauseSatellitePool:systemPause

should paused when call unpause ()") ;
97 r equ i r e (i s S a t e l l i t e P o o l [poo l] == true , "Liquidation :: unpauseSatellitePool:Not

SatellitePool") ;
98 i f (unpauseConf i rm [msg . sender] [poo l] == f a l s e) {
99 unpauseConf i rm [msg . sender] [poo l] == t rue ;

100 }
101 unpausePoolConf i rmCount [poo l] = unpausePoolConf i rmCount [poo l] . add (1) ;
102 u in t t r u s t e eCoun t = IHasRo l e (add r e s sReso . r equ i r eAndKey2Addres s (BORING_DAO, "

Liquidation :: withdraw: boringDAO contract not exist")) . getRoleMemberCount (
TRUSTEE_ROLE) ;

103 u in t t h r e s h o l d = t ru s t e eCoun t .mod(3) == 0 ? t r u s t e eCoun t . mul (2) . d i v (3) :
t r u s t e eCoun t . mul (2) . d i v (3) . add (1) ;

104 i f (unpausePoolConf i rmCount [poo l] >= t h r e s h o l d) {
105 IPause (poo l) . unpause () ;

12/25 PeckShield Audit Report #: 2020-89

Public

106 }
107 }

Listing 3.1: liquidation . sol

However, the current implementation fails to check if the trustee has called unpauseSatellitePool

() with the specific pool already. Since line 101 increments the count without checking unpauseConfirm

[msg.sender][pool], a malicious trustee could call unpauseSatellitePool() multiple times to unpause
any pool. In addition, line 99 has a typo (i.e., a duplicate =) such that unpauseConfirm[msg.sender][

pool] would never be set to true.

Recommendation Increment unpausePoolConfirmCount[pool] only if unpauseConfirm[msg.sender
][pool] is false. In addition, fix the typo in line 99.

Status This issue has been fixed in the commit: 8f3dc2e74c0099435a16e6e22055f205c9b96c20.

3.2 Missed Sanity Checks in Liquidation:pause()

• ID: PVE-002

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: BoringDAO

• Category: Business Logic [5]

• CWE subcategory: CWE-841 [3]

Description

In the Liquidation contract, the pause() function allows the dev and the trustee to pause the system
with a multisig-like mechanism. As shown in the code snippet below, when the coreDev or one of the
trustees invokes the pause() function, one of the flags, shouldPauseDev or shouldPauseTrustee, would
be set. When the other flag is set as well, the BorindDAO contract’s pause() handler would be called.
In addition, each address in the input pools[] array would be checked and pause() if that address is
a Satellite pool.

62 f unc t i on pause (address [] memory poo l s) pub l i c on l yPau s e r {
63 i f (msg . sender == coreDev) {
64 shouldPauseDev = t rue ;
65 } e l s e {
66 shou ldPauseTru s t e e = t rue ;
67 }
68 i f (shouldPauseDev && shou ldPauseTru s t e e) {
69 systemPause = t rue ;
70 // pause the system
71 boringDAO () . pause () ;

13/25 PeckShield Audit Report #: 2020-89

https://github.com/BoringDAO/boringDAO-contract/commit/8f3dc2e74c0099435a16e6e22055f205c9b96c20

Public

72 // pause satellitepool
73 f o r (u in t i =0; i < poo l s . l ength ; i++) {
74 i f (i s S a t e l l i t e P o o l [p oo l s [i]] == t rue) {
75 IPause (poo l s [i]) . pause () ;
76 }
77 }
78 }
79 }

Listing 3.2: liquidation . sol

However, the current implementation doesn’t check whether the dev and trustee want to pause
the same list of pools. Instead, the later caller decides which pools would be literally paused. Besides,
if the second caller fails to pass in the complete list of Satellite pools, those missed pools could not be
paused anymore. The reason is that boringDAO().pause() invokes the _pause() function which would
revert if it has been called before. This leads to a back-running issue. If there’s a compromised
trustee, she could pause() with an empty pools array right after the successful pause() call done by
the coreDev. Therefore, no Satellite pool is paused.

Recommendation Keep all Satellite pools in an array and pause all of them in the pause()

function without passing in the pools array.

Status This issue has been fixed in the commit: 0daf09f09fbd0b6ff4ea1f5faa9c08abe8bf3da5.

3.3 Unsafe Ownership Transition in SatellitePool

• ID: PVE-003

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: SatellitePool

• Category: Business Logic [5]

• CWE subcategory: CWE-841 [3]

Description

While reviewing the implementation of the SatellitePool contract, we notice that there’s a privileged
function liquidate() which allows the liquidation address to transfer all stakingToken out to an
arbitrary account. As shown in the code snippets below, the liquidation address could be set by the
owner with the setLiquidation() public function.

43 f unc t i on l i q u i d a t e (address account) pub l i c o v e r r i d e o n l y L i q u i d a t i o n {
44 s tak ingToken . s a f eT r a n s f e r (account , s tak ingToken . ba lanceOf (address (t h i s))) ;
45 }

Listing 3.3: SatellitePool . sol

14/25 PeckShield Audit Report #: 2020-89

https://github.com/BoringDAO/boringDAO-contract/commit/0daf09f09fbd0b6ff4ea1f5faa9c08abe8bf3da5

Public

65 f unc t i on s e t L i q u i d a t i o n (address l i q u i) pub l i c onlyOwner {
66 l i q u i d a t i o n = l i q u i ;
67 }

Listing 3.4: SatellitePool . sol

In addition, the transferOwnership() function allows the current owner to set a newOwner.

79 f unc t i on t r a n s f e rOwne r s h i p (address newOwner) pub l i c onlyOwner {
80 r equ i r e (newOwner != address (0) , "Ownable: new owner is the zero address") ;
81 owner = newOwner ;
82 }

Listing 3.5: SatellitePool . sol

However, if the newOwner is not the exact address of the new owner (e.g., due to a typo), nobody
could own that contract anymore.

Recommendation Implement a two-step ownership transfer mechanism that allows the new
owner to claim the ownership by signing a transaction. In addition, set the owner address to a timelock
or multisig contract to prevent a compromised owner from invoking the setLiquidation() function
and transferring all stakingToken out through liquidate().

Status This issue has been fixed in the commit: f05453eb364606d6fcfe9890ed76b1bf5e07dfa6.

3.4 Unused Interfaces

• ID: PVE-004

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: GovernorAlpha

• Category: Coding Practices [4]

• CWE subcategory: CWE-1041 [2]

Description

By declaring interfaces in a smart contract, we could simply call an external function of a callee con-
tract. For example, in the GovernorAlpha contract, interface TimelockInterface timelock is declared
to interact with the Timelock contract. In particular, timelock.delay() (line 298) could be used to
retrieve the public variable, delay, defined in the Timelock contract from the GovernorAlpha contract.

297 i n t e r f a c e T ime l o c k I n t e r f a c e {
298 f unc t i on de l a y () ex te rna l view re tu rn s (u in t) ;
299 f unc t i on GRACE_PERIOD() ex te rna l view re tu rn s (u in t) ;
300 f unc t i on acceptAdmin () ex te rna l ;
301 f unc t i on queuedTran sac t i on s (bytes32 hash) ex te rna l view re tu rn s (bool) ;
302 f unc t i on queueTransac t i on (address t a r g e t , u in t value , s t r i n g c a l l d a t a s i g n a t u r e ,

bytes c a l l d a t a data , u in t e ta) ex te rna l r e tu rn s (bytes32) ;

15/25 PeckShield Audit Report #: 2020-89

https://github.com/BoringDAO/boringDAO-contract/commit/f05453eb364606d6fcfe9890ed76b1bf5e07dfa6

Public

303 f unc t i on c a n c e lT r a n s a c t i o n (address t a r g e t , u in t value , s t r i n g c a l l d a t a s i g n a t u r e ,
bytes c a l l d a t a data , u in t e ta) ex te rna l ;

304 f unc t i on e x e cu t eT r an s a c t i o n (address t a r g e t , u in t value , s t r i n g c a l l d a t a s i g n a t u r e ,
bytes c a l l d a t a data , u in t e ta) ex te rna l payable r e tu rn s (bytes memory) ;

305 }

Listing 3.6: gov/GovernorAlpha.sol

However, while reviewing the declared interfaces, we identified that the acceptAdmin() is not used
throughout the GovernorAlpha contract.

Recommendation Remove the unused interface.

Status This issue has been fixed in the commit: f05453eb364606d6fcfe9890ed76b1bf5e07dfa6.

3.5 Weak Randomness in Tunnel::burn()

• ID: PVE-005

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: BoringDAO, Tunnel

• Category: Business Logic [5]

• CWE subcategory: CWE-841 [3]

Description

In the Tunnel contract, the burn() function allows the BoringDAO contract to burn otoken and emit
a BurnOToken event (line 303) with a random trustee as the proposer. With the event, the random
selected trustee would be notified to process the event.

272 f unc t i on burn (address account , uint256 amount , s t r i n g memory a s s e tAdd r e s s) ex te rna l
o v e r r i d e onlyBoringDAO{

273 r equ i r e (amount>=burnMin iL im i t , "Tunnel ::burn: the amount too small") ;
274 uint256 burnFeeAmountBToken = amount . mu l t i p l yDe c ima l (getRate (BURN_FEE)) ;
275 // convert to bor amount
276 u in t burnFeeAmount = o r a c l e () . g e tP r i c e (tunne lKey) . mu l t i p l yDe c ima l (

burnFeeAmountBToken) . d i v i d eDe c ima l (o r a c l e () . g e tP r i c e (BOR)) ;
277
278 // insurance apart
279 address i n s u r an c ePoo lAdd r e s s = add rRe s o l v e r . k e y2add r e s s (INSURANCE_POOL) ;
280 uint256 burnFeeAmount Insurance = burnFeeAmount . mu l t i p l yDe c ima l (
281 getRate (BURN_FEE_INSURANCE)
282) ;
283
284
285 // pledger apart
286 uint256 burnFeeAmountPledger = burnFeeAmount . mu l t i p l yDe c ima l (
287 getRate (BURN_FEE_PLEDGER)
288) ;

16/25 PeckShield Audit Report #: 2020-89

https://github.com/BoringDAO/boringDAO-contract/commit/f05453eb364606d6fcfe9890ed76b1bf5e07dfa6

Public

289 borERC20 () . t r an s f e rF r om (
290 account ,
291 i n s u r ancePoo lAdd r e s s ,
292 burnFeeAmount Insurance
293) ;
294 //fee to feepool
295 borERC20 () . t r an s f e rF r om (
296 account ,
297 address (f e ePoo l ()) ,
298 burnFeeAmountPledger
299) ;
300 f e ePoo l () . notifyBORFeeAmount (burnFeeAmountPledger) ;
301 // otoken burn
302 otokenMintBurn () . burn (account , amount) ;
303 emit BurnOToken (
304 account ,
305 amount ,
306 boringDAO () . getRandomTrustee () ,
307 a s s e tAdd r e s s
308) ;
309 }

Listing 3.7: Tunnel. sol

However, randomness on Ethereum is an existing problem with no proper solution except using
an oracle. As shown in the following code snippet, the getRandomTrustee() function uses the hash
of the timestamp and difficulty of the current block to generate the pseudo-random index. If a bad
actor uses a contract to trigger Tunnel::burn(), the index could be easily derived. Therefore, the
malicious contract could revert when the index is not the one she need and always pick up a single
trustee to process that event, which totally breaks the design.

105 f unc t i on getRandomTrustee () pub l i c o v e r r i d e view re tu rn s (address) {
106 uint256 t r u s t e eCoun t = getRoleMemberCount (TRUSTEE_ROLE) ;
107 uint256 i n d e x = uint256 (
108 keccak256 (ab i . encodePacked (now , block . d i f f i c u l t y))
109)
110 .mod(t r u s t e eCoun t) ;
111 address t r u s t e e = getRoleMember (TRUSTEE_ROLE, i ndex) ;
112 re tu rn t r u s t e e ;
113 }

Listing 3.8: BoringDAO.sol

Recommendation Use an oracle to feed the random seed instead of using Blockchain data.

Status This issue has been fixed in the commit: f05453eb364606d6fcfe9890ed76b1bf5e07dfa6.

17/25 PeckShield Audit Report #: 2020-89

https://github.com/BoringDAO/boringDAO-contract/commit/f05453eb364606d6fcfe9890ed76b1bf5e07dfa6

Public

4 | Conclusion

In this audit, we thoroughly analyzed the design and implementation of the BoringDAO protocol, which
is a decentralized bridge that connects multiple blockchains and supports crypto token transfers across
different blockchains. During the audit, we notice that the current code base is clearly organized and
those identified issues are promptly confirmed and fixed.

As a final precaution, we need to emphasize that smart contracts as a whole are still in an early,
but exciting stage of development. To improve this report, we greatly appreciate any constructive
feedbacks or suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

18/25 PeckShield Audit Report #: 2020-89

Public

5 | Appendix

5.1 Basic Coding Bugs

5.1.1 Constructor Mismatch

• Description: Whether the contract name and its constructor are not identical to each other.

• Result: Not found

• Severity: Critical

5.1.2 Ownership Takeover

• Description: Whether the set owner function is not protected.

• Result: Not found

• Severity: Critical

5.1.3 Redundant Fallback Function

• Description: Whether the contract has a redundant fallback function.

• Result: Not found

• Severity: Critical

5.1.4 Overflows & Underflows

• Description: Whether the contract has general overflow or underflow vulnerabilities [8, 9, 10,
11, 13].

• Result: Not found

• Severity: Critical

19/25 PeckShield Audit Report #: 2020-89

Public

5.1.5 Reentrancy

• Description: Reentrancy [14] is an issue when code can call back into your contract and change
state, such as withdrawing ETHs.

• Result: Not found

• Severity: Critical

5.1.6 Money-Giving Bug

• Description: Whether the contract returns funds to an arbitrary address.

• Result: Not found

• Severity: High

5.1.7 Blackhole

• Description: Whether the contract locks ETH indefinitely: merely in without out.

• Result: Not found

• Severity: High

5.1.8 Unauthorized Self-Destruct

• Description: Whether the contract can be killed by any arbitrary address.

• Result: Not found

• Severity: Medium

5.1.9 Revert DoS

• Description: Whether the contract is vulnerable to DoS attack because of unexpected revert.

• Result: Not found

• Severity: Medium

20/25 PeckShield Audit Report #: 2020-89

Public

5.1.10 Unchecked External Call

• Description: Whether the contract has any external call without checking the return value.

• Result: Not found

• Severity: Medium

5.1.11 Gasless Send

• Description: Whether the contract is vulnerable to gasless send.

• Result: Not found

• Severity: Medium

5.1.12 Send Instead Of Transfer

• Description: Whether the contract uses send instead of transfer.

• Result: Not found

• Severity: Medium

5.1.13 Costly Loop

• Description: Whether the contract has any costly loop which may lead to Out-Of-Gas excep-
tion.

• Result: Not found

• Severity: Medium

5.1.14 (Unsafe) Use Of Untrusted Libraries

• Description: Whether the contract use any suspicious libraries.

• Result: Not found

• Severity: Medium

21/25 PeckShield Audit Report #: 2020-89

Public

5.1.15 (Unsafe) Use Of Predictable Variables

• Description: Whether the contract contains any randomness variable, but its value can be
predicated.

• Result: Not found

• Severity: Medium

5.1.16 Transaction Ordering Dependence

• Description: Whether the final state of the contract depends on the order of the transactions.

• Result: Not found

• Severity: Medium

5.1.17 Deprecated Uses

• Description: Whether the contract use the deprecated tx.origin to perform the authorization.

• Result: Not found

• Severity: Medium

5.2 Semantic Consistency Checks

• Description: Whether the semantic of the white paper is different from the implementation of
the contract.

• Result: Not found

• Severity: Critical

5.3 Additional Recommendations

5.3.1 Avoid Use of Variadic Byte Array

• Description: Use fixed-size byte array is better than that of byte[], as the latter is a waste of
space.

• Result: Not found

• Severity: Low

22/25 PeckShield Audit Report #: 2020-89

Public

5.3.2 Make Visibility Level Explicit

• Description: Assign explicit visibility specifiers for functions and state variables.

• Result: Not found

• Severity: Low

5.3.3 Make Type Inference Explicit

• Description: Do not use keyword var to specify the type, i.e., it asks the compiler to deduce
the type, which is not safe especially in a loop.

• Result: Not found

• Severity: Low

5.3.4 Adhere To Function Declaration Strictly

• Description: Solidity compiler (version 0.4.23) enforces strict ABI length checks for return data
from calls() [1], which may break the the execution if the function implementation does NOT
follow its declaration (e.g., no return in implementing transfer() of ERC20 tokens).

• Result: Not found

• Severity: Low

23/25 PeckShield Audit Report #: 2020-89

Public

References

[1] axic. Enforcing ABI length checks for return data from calls can be breaking. https://github.

com/ethereum/solidity/issues/4116.

[2] MITRE. CWE-1041: Use of Redundant Code. https://cwe.mitre.org/data/definitions/1041.

html.

[3] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[4] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[5] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[6] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[7] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[8] PeckShield. ALERT: New batchOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-

10299). https://www.peckshield.com/2018/04/22/batchOverflow/.

[9] PeckShield. New burnOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-

11239). https://www.peckshield.com/2018/05/18/burnOverflow/.

24/25 PeckShield Audit Report #: 2020-89

https://github.com/ethereum/solidity/issues/4116
https://github.com/ethereum/solidity/issues/4116
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com/2018/04/22/batchOverflow/
https://www.peckshield.com/2018/05/18/burnOverflow/

Public

[10] PeckShield. New multiOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-

10706). https://www.peckshield.com/2018/05/10/multiOverflow/.

[11] PeckShield. New proxyOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-10376).

https://www.peckshield.com/2018/04/25/proxyOverflow/.

[12] PeckShield. PeckShield Inc. https://www.peckshield.com.

[13] PeckShield. Your Tokens Are Mine: A Suspicious Scam Token in A Top Exchange. https:

//www.peckshield.com/2018/04/28/transferFlaw/.

[14] Solidity. Warnings of Expressions and Control Structures. http://solidity.readthedocs.io/en/

develop/control-structures.html.

25/25 PeckShield Audit Report #: 2020-89

https://www.peckshield.com/2018/05/10/multiOverflow/
https://www.peckshield.com/2018/04/25/proxyOverflow/
https://www.peckshield.com
https://www.peckshield.com/2018/04/28/transferFlaw/
https://www.peckshield.com/2018/04/28/transferFlaw/
http://solidity.readthedocs.io/en/develop/control-structures.html
http://solidity.readthedocs.io/en/develop/control-structures.html

	Introduction
	About BoringDAO
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Business Logic Error in unpauseSatellitePool()
	Missed Sanity Checks in Liquidation:pause()
	Unsafe Ownership Transition in SatellitePool
	Unused Interfaces
	Weak Randomness in Tunnel::burn()

	Conclusion
	Appendix
	Basic Coding Bugs
	Constructor Mismatch
	Ownership Takeover
	Redundant Fallback Function
	Overflows & Underflows
	Reentrancy
	Money-Giving Bug
	Blackhole
	Unauthorized Self-Destruct
	Revert DoS
	Unchecked External Call
	Gasless Send
	Send Instead Of Transfer
	Costly Loop
	(Unsafe) Use Of Untrusted Libraries
	(Unsafe) Use Of Predictable Variables
	Transaction Ordering Dependence
	Deprecated Uses

	Semantic Consistency Checks
	Additional Recommendations
	Avoid Use of Variadic Byte Array
	Make Visibility Level Explicit
	Make Type Inference Explicit
	Adhere To Function Declaration Strictly

	References

