
Muse Finance
Wrap Function

Smart Contract Audit Report

June 25, 2021

Introduction 3
About Muse Finance 3
About ImmuneBytes 3

Documentation Details 3

Audit Process & Methodology 4

Audit Details 4

Audit Goals 5

Security Level References 5
High severity issues 6
Medium severity issues 6
Low severity issues 7

Recommendations 11

Automated Audit 12
Remix Compiler Warnings 12
Contract Library 13
SmartCheck 13
Slither 16

Concluding Remarks 28

Disclaimer 28

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

2

Introduction

1. About Muse Finance
Muse.Finance will link non ERC-20 assets with ERC-20 ecosystem, allowing the owners
of staked assets on platforms such as Cosmos, IRISnet, Cardano, etc. to participate in
lending, liquidity mining, yield farming which will also benefit staking service providers for
generating more revenue lines.
Muse.Finance is planning to issue a liquidity token called mToken (originated by
Muse.Finance) to construct a pool with DEX which will allow the users to get the yield
generating assets like mATOM, mADA, mIRIS, etc. carrying unit value and able to yield
farming with the Muse.Finance platform.

In order to accomplish this, we will build bridges between the Ethereum network and
other networks. We will then issue wrapped Token (ERC-20 token) in the Ethereum
network to registered Ethereum addresses of users who stake ATOM, ADA, IRIS, etc. in
each of the networks.
Visit https://musefinance.io/ to know more about.

2. About ImmuneBytes
ImmuneBytes is a security start-up to provide professional services in the blockchain
space. The team has hands-on experience in conducting smart contract audits,
penetration testing, and security consulting. ImmuneBytes’s security auditors have
worked on various A-league projects and have a great understanding of DeFi projects
like AAVE, Compound, 0x Protocol, Uniswap, dydx.

The team has been able to secure 15+ blockchain projects by providing security services
on different frameworks. ImmuneBytes team helps start-up with a detailed analysis of the
system ensuring security and managing the overall project.

Visit http://immunebytes.com/ to know more about the services.

Documentation Details
The Muse Finance team has provided the following doc for the purpose of audit:

1. Concept Paper
2. The Product
3. Muse. Finance Specification V1.pdf

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

3

https://musefinance.io/
http://immunebytes.com/
https://musefinance.io/assets/file/Concept_Paper_Ver_1.pdf
https://musefinance.io/assets/file/Muse.Finance.pdf

Audit Process & Methodology
ImmuneBytes team has performed thorough testing of the project starting with analyzing the
code design patterns in which we reviewed the smart contract architecture to ensure it is
structured and safe use of third-party smart contracts and libraries.

Our team then performed a formal line-by-line inspection of the Smart Contract in order to find
any potential issues like Signature Replay Attacks, Unchecked External Calls, External Contract
Referencing, Variable Shadowing, Race conditions, Transaction-ordering dependence,
timestamp dependence, DoS attacks, and others.

In the Unit testing phase, we run unit tests written by the developer in order to verify the
functions work as intended. In Automated Testing, we tested the Smart Contract with our
in-house developed tools to identify vulnerabilities and security flaws.

The code was audited by a team of independent auditors which includes -
1. Testing the functionality of the Smart Contract to determine proper logic has been

followed throughout.
2. Analyzing the complexity of the code by thorough, manual review of the code,

line-by-line.
3. Deploying the code on testnet using multiple clients to run live tests.
4. Analyzing failure preparations to check how the Smart Contract performs in case of bugs

and vulnerabilities.
5. Checking whether all the libraries used in the code are on the latest version.
6. Analyzing the security of the on-chain data.

Audit Details
● Project Name: Muse Finance - Wrap Contracts
● Languages: Solidity(Smart contract)
● Github commit hash for audit: 6f32fa955b9cb4b340b385fbf0b3a4fc16b2ab2e
● Platforms and Tools: Remix IDE, Truffle, Truffle Team, Ganache, Solhint, VScode,

Contract Library, Slither, SmartCheck

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

4

https://gitlab.com/muse-finance/muse-wrap-contract

Audit Goals
The focus of the audit was to verify that the smart contract system is secure, resilient, and
working according to its specifications. The audit activities can be grouped into the following
three categories:

1. Security: Identifying security-related issues within each contract and within the system of
contracts.

2. Sound Architecture: Evaluation of the architecture of this system through the lens of
established smart contract best practices and general software best practices.

3. Code Correctness and Quality: A full review of the contract source code. The primary
areas of focus include:

a. Correctness
b. Readability
c. Sections of code with high complexity
d. Quantity and quality of test coverage

Security Level References
Every issue in this report was assigned a severity level from the following:

High severity issues will bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be

better fixed at some point in the future.

Issues High Medium Low

Open
No Issues Found

2 9

Closed - -

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

5

High severity issues

No Issues Found

Medium severity issues

1. The following functions should be declared external as they are not used anywhere else
in the contract. This saves gas on function call and contract deployment.
DefiIssuerMultiSig:

- implementation
- setImplementation
- setThreshold
- addValidator
- removeValidator
- replaceValidator
- submitMint
- getValidators
- getMintTxConfirmations
- transactionInfoOf

DefiRewardMultiSig:
- implementation
- setImplementation
- setThreshold
- addValidator
- removeValidator
- replaceValidator
- getValidators
- getMintTxConfirmations
- transactionInfoOf
- submitStakingReward

DefiHelper.sol:
- hash
- hashRegister

DefiERC20.sol:
- totalBalanceOf

DefiWrap.sol:
This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

6

- erc20AddressOf
- erc20ImplementationOf
- issuer
- giver
- destinationAddressOf
- sourceAddressOf

ERC20Burnable.sol:
- addBurner
- renounceBurner
- burn

2. In contract DefiWrap.sol we recommend having onlyOwner update functions for
addresses _issuer and _giver. This provides the flexibility to update these addresses in
the DefiWrap contract in case there is a need to update the logic of the multisig contracts
interacting with it. In the current implementation since these addresses cannot be
updated, a whole new DefiWrap contract has to be deployed to support new Multisig
contracts and this could result in loss of existing storage. It is important to ensure that
the smart contracts are future-proof and logic changes can be seamlessly integrated.

Low severity issues

1. The pragma versions used within the contracts are not locked. Consider using the latest
versions among 0.5.16 or 0.5.17 for deploying the contracts as it does not compile for
any other version and can be confusing for a developer. Solidity source files indicate the
versions of the compiler they can be compiled with.

pragma solidity ^0.5.0; // bad: compiles between 0.5.0 and 0.5.17
pragma solidity 0.5.0; // good : compiles w 0.5.0 only but not the latest version
pragma solidity 0.5.17; // best: compiles w 0.5.17

2. In contract DefiERC20.sol, line 33:

_rate = 1 * _rate_decimal;

This can be moved to line 16 where _rate is defined:

uint256 public _rate;

can be modified to:
This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

7

uint256 private constant _rate_decimal = 1000000000000000000; //1e18

uint256 public _rate = 1 * _rate_decimal;

This is because _rate is not dynamically defined in the constructor and hence does not
need to be there. This will save minor gas costs on deployment. Also, it is good practice
to initialize all state variables for better readability and understanding.

3. In contract DefiERC20.sol, line 50:

The function _claimReward does not need to have a non-reentrancy clause as there is
no interaction with any external contract. The possibility of a reentrancy attack only
arises if a contract function is trying to interact with any untrusted 3rd party contract
which is not the case here as the function does only state manipulation. Removing the
reentrancy clause will save gas both on deployment and interaction.

4. In contract DefiERC20.sol,
We recommend creating another function _transferHiddenToken:

function _transferHiddenToken(address from, address to, uint256

amount) private returns (bool){

uint256 _h_amount= (amount.mul(_rate_decimal)).div(_rate);

_h_balances[to] = _h_balances[to].add(_h_amount);

_h_balances[from] = _h_balances[from].sub(_h_amount);

return true;

}

This will reduce gas in transfer and transferFrom functions that call both
_addHiddenToken and _removeHiddenToken functions which have redundant memory
usage and state changes by bundling both into the above-recommended function.

5. In contract DefiWrap.sol, line 94 and line 105

We recommend adding a greater than zero check for the amount value passed as a
parameter to submitMint and submitBurn functions. This is because the functions will
be executed nonetheless successfully even if amount == 0 is provided with no change in
the state resulting in unnecessary loss of gas.

6. There are multiple instances in the contract where the array length is calculated inside
the for loop definition. As an example:

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

8

In such cases, array.length is called each time the for loop is executed which uses a lot
of gas.

We recommend storing the array length in a variable before the for loop and use that
variable in the for loop definition. This ensures array length is calculated only once which
saves gas.

The following functions can be improved:
- Contract DefiIssuerMultiSig.sol, line 122 (removeValidator), 140

(replaceValidator)
- Contract DefiRewardMultiSig.sol, line 104 (removeValidator), 122

(replaceValidator)

7. Contract DefiRewardMultisig.sol, line 261:
We recommend modifying getMintTxConfirmations to
getSubmitStakingRewardTxConfirmations (or similar) to align with the functionality and
naming conventions of other functions in the contract.

8. Contract DefiIssuerMultiSig, line 155
Contract DefiRewardMultiSig, line 135

We recommend using safemath for the arithmetic operation. Although it is a fairly simple
arithmetic operation, safemath adds an extra layer of security over overflow/underflow
issues.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

9

9. Contract DefiERC20.sol, line 45:

The function claimReward() expects a return value for unit256 userReward but none is
returned and hence raises a compilation warning:

We recommend to return the result of _claimReward to silence this warning. Either of
these will work in the claimReward function:

userReward = _claimReward(msg.sender);

Or:

return _claimReward(msg.sender);

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

10

Recommendations
1. Add events for most state changes. For example, when creating new DefiERC20 tokens

from DefiWrap, when registering a new sourceAddress or claiming rewards in
DefiERC20. Events should be fired with all state variable updates as good practice. This
makes the contract future proof for usage in frontend applications and event listener
backend services.

2. Follow solidity style guide for better readability:
https://docs.soliditylang.org/en/v0.7.5/style-guide.html.
For example, Functions should be grouped according to their visibility and ordered:

- constructor
- receive function (if exists)
- fallback function (if exists)
- external
- public
- internal
- private
- Within a grouping, place the view and pure functions last.

Note: Linting violations can be easily fixed using linters like solhint.

3. Add Natspecs comments to all functions for a better understanding regarding what the
parameters mean and what the function does.

4. All the “require” statements used in the contract should also specify error messages for
easy debugging.

5. We recommend following the solidity naming conventions. There are a lot of naming in
the contracts that deviate from the conventions. For example, _enableStake_Bonus
does not follow a mixed case format.

6. We recommend avoiding using literals with too many digits as it is hard to read and
could easily be mistaken. For example,

uint256 private constant _rate_decimal = 1000000000000000000; //1e18

We recommend using the Ether suffix.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

11

https://docs.soliditylang.org/en/v0.7.5/style-guide.html
https://www.npmjs.com/package/solhint
https://solidity.readthedocs.io/en/v0.5.3/style-guide.html#natspec
https://docs.soliditylang.org/en/v0.4.25/style-guide.html#naming-conventions
https://docs.soliditylang.org/en/latest/units-and-global-variables.html#ether-units

Automated Audit

Remix Compiler Warnings
One warning was thrown by the compiler which is covered in the manual audit:

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

12

Contract Library
Contract-library contains the most complete, high-level decompiled representation of all
Ethereum smart contracts, with security analysis applied to these in real-time.

We performed analysis using the contract Library on the mainnet address of the DefiWrap
contract on kovan: 0xa8446884a2790BaD19cA0424446987659E68d700

Analysis summary can be accessed here:
https://contract-library.com/contracts/Kovan/0xA8446884A2790BAD19CA0424446987659E68D
700

It did not return any issue during the analysis.

SmartCheck
Smartcheck is a tool for automated static analysis of Solidity source code for security
vulnerabilities and best practices. SmartCheck translates Solidity source code into an
XML-based intermediate representation and checks it against XPath patterns. Smartcheck
shows significant improvements over existing alternatives in terms of false discovery rate (FDR)
and false-negative rate (FNR). The report for DefiWrap.sol:

ruleId: SOLIDITY_PRAGMAS_VERSION

patternId: 23fc32

severity: 1

line: 1

column: 16

content: ^

ruleId: SOLIDITY_PRIVATE_MODIFIER_DONT_HIDE_DATA

patternId: 5616b2

severity: 1

line: 17

column: 34

content: private

ruleId: SOLIDITY_PRIVATE_MODIFIER_DONT_HIDE_DATA

patternId: 5616b2

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

13

https://kovan.etherscan.io/address/0xa8446884a2790bad19ca0424446987659e68d700
https://contract-library.com/contracts/Kovan/0xA8446884A2790BAD19CA0424446987659E68D700
https://contract-library.com/contracts/Kovan/0xA8446884A2790BAD19CA0424446987659E68D700

severity: 1

line: 18

column: 35

content: private

ruleId: SOLIDITY_PRIVATE_MODIFIER_DONT_HIDE_DATA

patternId: 5616b2

severity: 1

line: 22

column: 32

content: private

ruleId: SOLIDITY_PRIVATE_MODIFIER_DONT_HIDE_DATA

patternId: 5616b2

severity: 1

line: 23

column: 52

content: private

ruleId: SOLIDITY_PRIVATE_MODIFIER_DONT_HIDE_DATA

patternId: 5616b2

severity: 1

line: 26

column: 51

content: private

ruleId: SOLIDITY_VISIBILITY

patternId: 910067

severity: 1

line: 58

column: 4

content: functioncreateDefiERC20(stringcalldataname,stringcalldata<missing

')'>

ruleId: SOLIDITY_VISIBILITY

patternId: b51ce0

severity: 1

line: 58

column: 67

content: symbol,

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

14

ruleId: SOLIDITY_VISIBILITY

patternId: b51ce0

severity: 1

line: 58

column: 75

content: uint8decimals,

ruleId: SOLIDITY_VISIBILITY

patternId: b51ce0

severity: 1

line: 58

column: 91

content: uint256cap)external

ruleId: SOLIDITY_VISIBILITY

patternId: b51ce0

severity: 1

line: 60

column: 8

content:

onlyOwner{DefiERC20_defiERC20=newDefiERC20(name,symbol,decimals,cap);

ruleId: SOLIDITY_VISIBILITY

patternId: b51ce0

severity: 1

line: 63

column: 7

content: _erc20Names[symbol]=_defiERC20;

ruleId: SOLIDITY_VISIBILITY

patternId: b51ce0

severity: 1

line: 64

column: 7

content: _erc20Addresses[address(_defiERC20)]=_defiERC20;

SOLIDITY_VISIBILITY :7

SOLIDITY_PRAGMAS_VERSION :1

SOLIDITY_PRIVATE_MODIFIER_DONT_HIDE_DATA :5

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

15

SmartCheck did not detect any high severity issue. All the considerable issues raised by
SmartCheck are already covered in the Manual Audit section of this report or not relevant.

Slither
Slither, an open-source static analysis framework. This tool provides rich information about
Ethereum smart contracts and has critical properties. While Slither is built as a security-oriented
static analysis framework, it is also used to enhance the user’s understanding of smart
contracts, assist in code reviews, and detect missing optimizations.

➜ contracts slither DefiIssuerMultiSig.sol

INFO:Detectors:

Reentrancy in

DefiIssuerMultiSig.executeMintTransaction(address,bytes32,bytes32)

(DefiIssuerMultiSig.sol#187-207):

External calls:

- ! external_mint(erc20Address,hashSourceAddress,_amount)

(DefiIssuerMultiSig.sol#202)

- result =

_implementation.submitMint(erc20Address,hashSourceAddress,amount)

(DefiIssuerMultiSig.sol#211)

State variables written after the call(s):

- transactions[transactionId][hashSourceAddress] = _txData

(DefiIssuerMultiSig.sol#205)

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vu

lnerabilities-1

INFO:Detectors:

Context._msgData() (@openzeppelin/contracts/GSN/Context.sol#23-26) is never

used and should be removed

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code

INFO:Detectors:

Pragma version^0.5.0 (@openzeppelin/contracts/GSN/Context.sol#1) allows old

versions

Pragma version^0.5.0 (@openzeppelin/contracts/ownership/Ownable.sol#1)

allows old versions

Pragma version^0.5.0 (DefiHelper.sol#1) allows old versions

Pragma version^0.5.0 (DefiIssuerMultiSig.sol#1) allows old versions

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

16

Pragma version^0.5.0 (IDefiWrap.sol#1) allows old versions

solc-0.5.0 is not recommended for deployment

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-ver

sions-of-solidity

INFO:Detectors:

Parameter DefiIssuerMultiSig.setThreshold(bool,uint256)._fixed

(DefiIssuerMultiSig.sol#91) is not in mixedCase

Function DefiIssuerMultiSig.external_mint(address,bytes32,uint256)

(DefiIssuerMultiSig.sol#209-213) is not in mixedCase

Parameter

DefiIssuerMultiSig.transactionInfoOf(address,bytes32,bytes32,uint256)._erc2

0Address (DefiIssuerMultiSig.sol#279) is not in mixedCase

Parameter

DefiIssuerMultiSig.transactionInfoOf(address,bytes32,bytes32,uint256)._amou

nt (DefiIssuerMultiSig.sol#279) is not in mixedCase

Variable DefiIssuerMultiSig._implementation (DefiIssuerMultiSig.sol#26) is

not in mixedCase

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-t

o-solidity-naming-conventions

INFO:Detectors:

Redundant expression "this (@openzeppelin/contracts/GSN/Context.sol#24)"

inContext (@openzeppelin/contracts/GSN/Context.sol#13-27)

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#redundant-sta

tements

INFO:Detectors:

owner() should be declared external:

- Ownable.owner()

(@openzeppelin/contracts/ownership/Ownable.sol#30-32)

renounceOwnership() should be declared external:

- Ownable.renounceOwnership()

(@openzeppelin/contracts/ownership/Ownable.sol#56-59)

transferOwnership(address) should be declared external:

- Ownable.transferOwnership(address)

(@openzeppelin/contracts/ownership/Ownable.sol#65-67)

hash(string) should be declared external:

- DefiHelper.hash(string) (DefiHelper.sol#4-9)

hashRegister(address,bytes32) should be declared external:

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

17

- DefiHelper.hashRegister(address,bytes32) (DefiHelper.sol#11-16)

implementation() should be declared external:

- DefiIssuerMultiSig.implementation()

(DefiIssuerMultiSig.sol#79-81)

setImplementation(address) should be declared external:

- DefiIssuerMultiSig.setImplementation(address)

(DefiIssuerMultiSig.sol#87-89)

setThreshold(bool,uint256) should be declared external:

- DefiIssuerMultiSig.setThreshold(bool,uint256)

(DefiIssuerMultiSig.sol#91-100)

addValidator(address) should be declared external:

- DefiIssuerMultiSig.addValidator(address)

(DefiIssuerMultiSig.sol#104-113)

removeValidator(address) should be declared external:

- DefiIssuerMultiSig.removeValidator(address)

(DefiIssuerMultiSig.sol#117-130)

replaceValidator(address,address) should be declared external:

- DefiIssuerMultiSig.replaceValidator(address,address)

(DefiIssuerMultiSig.sol#135-150)

submitMint(address,bytes32,bytes32,uint256) should be declared external:

- DefiIssuerMultiSig.submitMint(address,bytes32,bytes32,uint256)

(DefiIssuerMultiSig.sol#165-173)

getValidators() should be declared external:

- DefiIssuerMultiSig.getValidators()

(DefiIssuerMultiSig.sol#251-256)

getMintTxConfirmations(bytes32) should be declared external:

- DefiIssuerMultiSig.getMintTxConfirmations(bytes32)

(DefiIssuerMultiSig.sol#261-277)

transactionInfoOf(address,bytes32,bytes32,uint256) should be declared

external:

-

DefiIssuerMultiSig.transactionInfoOf(address,bytes32,bytes32,uint256)

(DefiIssuerMultiSig.sol#279-288)

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#public-functi

on-that-could-be-declared-external

INFO:Slither:DefiIssuerMultiSig.sol analyzed (5 contracts with 75

detectors), 29 result(s) found

INFO:Slither:Use https://crytic.io/ to get access to additional detectors

and Github integration

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

18

➜ contracts slither DefiRewardMultiSig.sol

INFO:Detectors:

Reentrancy in DefiRewardMultiSig.executeSubmitTransaction(address,bytes32)

(DefiRewardMultiSig.sol#168-191):

External calls:

- ! external_submit(erc20Address,_amount)

(DefiRewardMultiSig.sol#183)

- result =

_implementation.submitStakingReward(erc20Address,amount)

(DefiRewardMultiSig.sol#195)

State variables written after the call(s):

- transactions[transactionId] = _txData

(DefiRewardMultiSig.sol#189)

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vu

lnerabilities-1

INFO:Detectors:

Context._msgData() (@openzeppelin/contracts/GSN/Context.sol#23-26) is never

used and should be removed

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code

INFO:Detectors:

Pragma version^0.5.0 (@openzeppelin/contracts/GSN/Context.sol#1) allows old

versions

Pragma version^0.5.0 (@openzeppelin/contracts/ownership/Ownable.sol#1)

allows old versions

Pragma version^0.5.0 (DefiHelper.sol#1) allows old versions

Pragma version^0.5.0 (DefiRewardMultiSig.sol#1) allows old versions

Pragma version^0.5.0 (IDefiWrap.sol#1) allows old versions

solc-0.5.0 is not recommended for deployment

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-ver

sions-of-solidity

INFO:Detectors:

Parameter DefiRewardMultiSig.setThreshold(bool,uint256)._fixed

(DefiRewardMultiSig.sol#72) is not in mixedCase

Function DefiRewardMultiSig.external_submit(address,uint256)

(DefiRewardMultiSig.sol#193-197) is not in mixedCase

Parameter

DefiRewardMultiSig.transactionInfoOf(address,uint256,uint256)._erc20Address

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

19

(DefiRewardMultiSig.sol#281) is not in mixedCase

Parameter

DefiRewardMultiSig.transactionInfoOf(address,uint256,uint256)._amount

(DefiRewardMultiSig.sol#281) is not in mixedCase

Variable DefiRewardMultiSig._implementation (DefiRewardMultiSig.sol#24) is

not in mixedCase

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-t

o-solidity-naming-conventions

INFO:Detectors:

Redundant expression "this (@openzeppelin/contracts/GSN/Context.sol#24)"

inContext (@openzeppelin/contracts/GSN/Context.sol#13-27)

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#redundant-sta

tements

INFO:Detectors:

owner() should be declared external:

- Ownable.owner()

(@openzeppelin/contracts/ownership/Ownable.sol#30-32)

renounceOwnership() should be declared external:

- Ownable.renounceOwnership()

(@openzeppelin/contracts/ownership/Ownable.sol#56-59)

transferOwnership(address) should be declared external:

- Ownable.transferOwnership(address)

(@openzeppelin/contracts/ownership/Ownable.sol#65-67)

hash(string) should be declared external:

- DefiHelper.hash(string) (DefiHelper.sol#4-9)

hashRegister(address,bytes32) should be declared external:

- DefiHelper.hashRegister(address,bytes32) (DefiHelper.sol#11-16)

setThreshold(bool,uint256) should be declared external:

- DefiRewardMultiSig.setThreshold(bool,uint256)

(DefiRewardMultiSig.sol#72-81)

addValidator(address) should be declared external:

- DefiRewardMultiSig.addValidator(address)

(DefiRewardMultiSig.sol#85-94)

removeValidator(address) should be declared external:

- DefiRewardMultiSig.removeValidator(address)

(DefiRewardMultiSig.sol#98-112)

replaceValidator(address,address) should be declared external:

- DefiRewardMultiSig.replaceValidator(address,address)

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

20

(DefiRewardMultiSig.sol#117-131)

submitStakingReward(address,uint256,uint256) should be declared external:

- DefiRewardMultiSig.submitStakingReward(address,uint256,uint256)

(DefiRewardMultiSig.sol#145-154)

implementation() should be declared external:

- DefiRewardMultiSig.implementation()

(DefiRewardMultiSig.sol#239-241)

setImplementation(address) should be declared external:

- DefiRewardMultiSig.setImplementation(address)

(DefiRewardMultiSig.sol#247-249)

getValidators() should be declared external:

- DefiRewardMultiSig.getValidators()

(DefiRewardMultiSig.sol#253-258)

getMintTxConfirmations(bytes32) should be declared external:

- DefiRewardMultiSig.getMintTxConfirmations(bytes32)

(DefiRewardMultiSig.sol#263-279)

transactionInfoOf(address,uint256,uint256) should be declared external:

- DefiRewardMultiSig.transactionInfoOf(address,uint256,uint256)

(DefiRewardMultiSig.sol#281-290)

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#public-functi

on-that-could-be-declared-external

INFO:Slither:DefiRewardMultiSig.sol analyzed (5 contracts with 75

detectors), 29 result(s) found

INFO:Slither:Use https://crytic.io/ to get access to additional detectors

and Github integration

➜ contracts slither DefiWrap.sol

INFO:Detectors:

DefiWrap.submitStakingReward(address,uint256) (DefiWrap.sol#89-94) ignores

return value by IDefiERC20(erc20Address).submitStakingReward(amount)

(DefiWrap.sol#92)

DefiWrap.submitMint(address,bytes32,uint256) (DefiWrap.sol#97-106) ignores

return value by

IDefiERC20(erc20Address).submitMint(_registeredAddresses[transactionId],amo

unt) (DefiWrap.sol#104)

DefiWrap.submitBurn(address,uint256) (DefiWrap.sol#108-115) ignores return

value by _erc20Addresses[erc20Address].submitBurn(msg.sender,amount)

(DefiWrap.sol#112)

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#unused-return

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

21

INFO:Detectors:

ERC20Capped.constructor(uint256).cap

(@openzeppelin/contracts/token/ERC20/ERC20Capped.sol#15) shadows:

- ERC20Capped.cap()

(@openzeppelin/contracts/token/ERC20/ERC20Capped.sol#23-25) (function)

ERC20Detailed.constructor(string,string,uint8).name

(@openzeppelin/contracts/token/ERC20/ERC20Detailed.sol#18) shadows:

- ERC20Detailed.name()

(@openzeppelin/contracts/token/ERC20/ERC20Detailed.sol#27-29) (function)

ERC20Detailed.constructor(string,string,uint8).symbol

(@openzeppelin/contracts/token/ERC20/ERC20Detailed.sol#18) shadows:

- ERC20Detailed.symbol()

(@openzeppelin/contracts/token/ERC20/ERC20Detailed.sol#35-37) (function)

ERC20Detailed.constructor(string,string,uint8).decimals

(@openzeppelin/contracts/token/ERC20/ERC20Detailed.sol#18) shadows:

- ERC20Detailed.decimals()

(@openzeppelin/contracts/token/ERC20/ERC20Detailed.sol#51-53) (function)

DefiERC20.constructor(string,string,uint8,uint256).name (DefiERC20.sol#35)

shadows:

- ERC20Detailed.name()

(@openzeppelin/contracts/token/ERC20/ERC20Detailed.sol#27-29) (function)

DefiERC20.constructor(string,string,uint8,uint256).symbol

(DefiERC20.sol#36) shadows:

- ERC20Detailed.symbol()

(@openzeppelin/contracts/token/ERC20/ERC20Detailed.sol#35-37) (function)

DefiERC20.constructor(string,string,uint8,uint256).decimals

(DefiERC20.sol#37) shadows:

- ERC20Detailed.decimals()

(@openzeppelin/contracts/token/ERC20/ERC20Detailed.sol#51-53) (function)

DefiERC20.constructor(string,string,uint8,uint256).cap (DefiERC20.sol#38)

shadows:

- ERC20Capped.cap()

(@openzeppelin/contracts/token/ERC20/ERC20Capped.sol#23-25) (function)

DefiWrap.constructor(address,address).issuer (DefiWrap.sol#55) shadows:

- DefiWrap.issuer() (DefiWrap.sol#125-127) (function)

DefiWrap.constructor(address,address).giver (DefiWrap.sol#55) shadows:

- DefiWrap.giver() (DefiWrap.sol#129-131) (function)

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#local-variabl

e-shadowing

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

22

INFO:Detectors:

DefiERC20.submitBurn(address,uint256) (DefiERC20.sol#91-100) should emit an

event for:

- _deposited_total = _deposited_total.sub(amount)

(DefiERC20.sol#97)

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#missing-event

s-arithmetic

INFO:Detectors:

DefiWrap.constructor(address,address).issuer (DefiWrap.sol#55) lacks a

zero-check on :

- _issuer = issuer (DefiWrap.sol#56)

DefiWrap.constructor(address,address).giver (DefiWrap.sol#55) lacks a

zero-check on :

- _giver = giver (DefiWrap.sol#57)

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-

address-validation

INFO:Detectors:

Reentrancy in DefiWrap.submitBurn(address,uint256) (DefiWrap.sol#108-115):

External calls:

- _erc20Addresses[erc20Address].submitBurn(msg.sender,amount)

(DefiWrap.sol#112)

Event emitted after the call(s):

- BurnConfirmation(msg.sender,erc20Address,amount)

(DefiWrap.sol#113)

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vu

lnerabilities-3

INFO:Detectors:

Context._msgData() (@openzeppelin/contracts/GSN/Context.sol#23-26) is never

used and should be removed

ERC20._burnFrom(address,uint256)

(@openzeppelin/contracts/token/ERC20/ERC20.sol#226-229) is never used and

should be removed

SafeMath.mod(uint256,uint256)

(@openzeppelin/contracts/math/SafeMath.sol#135-137) is never used and

should be removed

SafeMath.mod(uint256,uint256,string)

(@openzeppelin/contracts/math/SafeMath.sol#152-155) is never used and

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

23

should be removed

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code

INFO:Detectors:

Pragma version^0.5.0 (@openzeppelin/contracts/GSN/Context.sol#1) allows old

versions

Pragma version^0.5.0 (@openzeppelin/contracts/access/Roles.sol#1) allows

old versions

Pragma version^0.5.0

(@openzeppelin/contracts/access/roles/MinterRole.sol#1) allows old versions

Pragma version^0.5.0 (@openzeppelin/contracts/math/SafeMath.sol#1) allows

old versions

Pragma version^0.5.0 (@openzeppelin/contracts/ownership/Ownable.sol#1)

allows old versions

Pragma version^0.5.0 (@openzeppelin/contracts/token/ERC20/ERC20.sol#1)

allows old versions

Pragma version^0.5.0

(@openzeppelin/contracts/token/ERC20/ERC20Capped.sol#1) allows old versions

Pragma version^0.5.0

(@openzeppelin/contracts/token/ERC20/ERC20Detailed.sol#1) allows old

versions

Pragma version^0.5.0

(@openzeppelin/contracts/token/ERC20/ERC20Mintable.sol#1) allows old

versions

Pragma version^0.5.0 (@openzeppelin/contracts/token/ERC20/IERC20.sol#1)

allows old versions

Pragma version^0.5.0 (DefiERC20.sol#1) allows old versions

Pragma version^0.5.0 (DefiHelper.sol#1) allows old versions

Pragma version^0.5.0 (DefiWrap.sol#1) allows old versions

Pragma version^0.5.0 (ERC20Burnable.sol#1) allows old versions

Pragma version^0.5.0 (IDefiERC20.sol#1) allows old versions

Pragma version^0.5.0 (IDefiWrap.sol#1) allows old versions

solc-0.5.0 is not recommended for deployment

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-ver

sions-of-solidity

INFO:Detectors:

Variable DefiERC20._h_balances (DefiERC20.sol#16) is not in mixedCase

Variable DefiERC20._h_totalSupply (DefiERC20.sol#18) is not in mixedCase

Variable DefiERC20._deposited_total (DefiERC20.sol#19) is not in mixedCase

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

24

Variable DefiERC20._rate (DefiERC20.sol#22) is not in mixedCase

Constant DefiERC20._rate_decimal (DefiERC20.sol#23) is not in

UPPER_CASE_WITH_UNDERSCORES

Variable DefiWrap._issuer (DefiWrap.sol#30) is not in mixedCase

Variable DefiWrap._giver (DefiWrap.sol#32) is not in mixedCase

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-t

o-solidity-naming-conventions

INFO:Detectors:

Redundant expression "this (@openzeppelin/contracts/GSN/Context.sol#24)"

inContext (@openzeppelin/contracts/GSN/Context.sol#13-27)

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#redundant-sta

tements

INFO:Detectors:

DefiERC20.slitherConstructorConstantVariables() (DefiERC20.sol#9-169) uses

literals with too many digits:

- _rate_decimal = 1000000000000000000 (DefiERC20.sol#23)

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digi

ts

INFO:Detectors:

addMinter(address) should be declared external:

- MinterRole.addMinter(address)

(@openzeppelin/contracts/access/roles/MinterRole.sol#27-29)

renounceMinter() should be declared external:

- MinterRole.renounceMinter()

(@openzeppelin/contracts/access/roles/MinterRole.sol#31-33)

owner() should be declared external:

- Ownable.owner()

(@openzeppelin/contracts/ownership/Ownable.sol#30-32)

renounceOwnership() should be declared external:

- Ownable.renounceOwnership()

(@openzeppelin/contracts/ownership/Ownable.sol#56-59)

transferOwnership(address) should be declared external:

- Ownable.transferOwnership(address)

(@openzeppelin/contracts/ownership/Ownable.sol#65-67)

allowance(address,address) should be declared external:

- ERC20.allowance(address,address)

(@openzeppelin/contracts/token/ERC20/ERC20.sol#70-72)

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

25

approve(address,uint256) should be declared external:

- ERC20.approve(address,uint256)

(@openzeppelin/contracts/token/ERC20/ERC20.sol#81-84)

increaseAllowance(address,uint256) should be declared external:

- ERC20.increaseAllowance(address,uint256)

(@openzeppelin/contracts/token/ERC20/ERC20.sol#116-119)

decreaseAllowance(address,uint256) should be declared external:

- ERC20.decreaseAllowance(address,uint256)

(@openzeppelin/contracts/token/ERC20/ERC20.sol#135-138)

cap() should be declared external:

- ERC20Capped.cap()

(@openzeppelin/contracts/token/ERC20/ERC20Capped.sol#23-25)

name() should be declared external:

- ERC20Detailed.name()

(@openzeppelin/contracts/token/ERC20/ERC20Detailed.sol#27-29)

symbol() should be declared external:

- ERC20Detailed.symbol()

(@openzeppelin/contracts/token/ERC20/ERC20Detailed.sol#35-37)

decimals() should be declared external:

- ERC20Detailed.decimals()

(@openzeppelin/contracts/token/ERC20/ERC20Detailed.sol#51-53)

totalBalanceOf(address) should be declared external:

- DefiERC20.totalBalanceOf(address) (DefiERC20.sol#116-118)

erc20AddressOf(string) should be declared external:

- DefiWrap.erc20AddressOf(string) (DefiWrap.sol#117-119)

erc20ImplementationOf(address) should be declared external:

- DefiWrap.erc20ImplementationOf(address) (DefiWrap.sol#121-123)

issuer() should be declared external:

- DefiWrap.issuer() (DefiWrap.sol#125-127)

giver() should be declared external:

- DefiWrap.giver() (DefiWrap.sol#129-131)

destinationAddressOf(address,bytes32) should be declared external:

- DefiWrap.destinationAddressOf(address,bytes32)

(DefiWrap.sol#133-136)

sourceAddressOf(address,address) should be declared external:

- DefiWrap.sourceAddressOf(address,address) (DefiWrap.sol#138-141)

addBurner(address) should be declared external:

- BurnerRole.addBurner(address) (ERC20Burnable.sol#27-29)

renounceBurner() should be declared external:

- BurnerRole.renounceBurner() (ERC20Burnable.sol#31-33)

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

26

burn(uint256) should be declared external:

- ERC20Burnable.burn(uint256) (ERC20Burnable.sol#47-49)

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#public-functi

on-that-could-be-declared-external

INFO:Slither:DefiWrap.sol analyzed (17 contracts with 75 detectors), 70

result(s) found

INFO:Slither:Use https://crytic.io/ to get access to additional detectors

and Github integration

Slither did not raise any high severity issues. All other issues are covered in the manual audit or
are not relevant.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

27

Concluding Remarks
While conducting the audits of the Muse Finance smart contracts, it was observed that the
contracts contain Medium, and Low severity issues, along with several areas of
recommendations.

Our auditors suggest that Medium and Low severity issues should be resolved by the
developers. Resolving the areas of recommendations are up to the team’s discretion. The
recommendations given will improve the operations of the smart contract.

Disclaimer
ImmuneBytes’s audit does not provide a security or correctness guarantee of the audited smart
contract. Securing smart contracts is a multistep process, therefore running a bug bounty
program as a complement to this audit is strongly recommended.

Our team does not endorse the Muse Finance platform or its product nor this audit is investment
advice.
Notes:

● Please make sure contracts deployed on the mainnet are the ones audited.
● Check for the code refactor by the team on critical issues.

ImmuneBytes Pvt Ltd.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

28

