
Gnosis Multisig Wallet Audit

MARCH 6, 2018 | IN SECURITY AUDITS | BY OPENZEPPELIN SECURITY

We reviewed and audited the Gnosis multisig wallet contract for our own internal use, and choose to publish our findings for informational
purposes. We also shared this report privately with the Gnosis team.

We found the code under scrutiny to be elegant, robust, and secure. The wallet’s features are implemented with a minimal amount of code,
resulting in a reduced attack surface. Despite such minimalism, its well-thought-out design allows for a surprisingly large feature set.

The audited code is located in the github.com/maraoz/MultiSigWallet repository, which is a fork of the original code found at
github.com/gnosis/MultiSigWallet. The version used for this report is commit 585863178330d3c64855d596caba2b7f3271a423 . Only the code in

 Announcements Security Audits Events Perspectives Website 

https://blog.openzeppelin.com/category/security-audits/
https://blog.openzeppelin.com/author/openzeppelin-security/
https://github.com/maraoz/MultiSigWallet/tree/585863178330d3c64855d596caba2b7f3271a423
https://github.com/gnosis/MultiSigWallet
https://blog.openzeppelin.com/announcements/
https://blog.openzeppelin.com/security-audits/
https://blog.openzeppelin.com/ozevents/
https://blog.openzeppelin.com/perspectives/
https://openzeppelin.com/
https://blog.openzeppelin.com/

contracts/MultiSigWallet.sol was audited.

Here is our assessment and observations on possible improvements, in order of importance.

Critical Severity

No issues of critical severity.

High Severity

Incomplete test coverage

Of the features implemented in MultiSigWallet , only the following are tested:

Funding a wallet

Submitting a transaction

Confirming a transaction

Changing the required number of confirmations

Executing a transaction

A considerable amount of features are not tested, such as:

Adding an owner

Changing an owner

Removing an owner

Trying to add duplicate owners

Trying to remove all owners

Trying to set an invalid number of required approvals

An Owner trying to execute a transaction that is not yet approved by other owners

Non-owners trying to submit/approve/execute transactions

Consider making use of a coverage library such as solidity-coverage and increasing the test coverage to match all the features, behaviors and
edge cases implemented in the MultiSigWallet contract.
Update: The Gnosis team informed us that there are some tests which were not ported to the truffle testing framework.

https://github.com/maraoz/MultiSigWallet/blob/585863178330d3c64855d596caba2b7f3271a423/contracts/MultiSigWallet.sol
https://github.com/sc-forks/solidity-coverage

Medium Severity

replaceOwner can produce an invalid owner set

Since moving funds out of the wallet always requires a transaction, and at least one owner to authorize it, a wallet with no owners or invalid owner
addresses (such as the address 0x0) would be unable to withdraw its funds.
To guard against this problem, the constructor function uses the validRequirement modifier to guarantee that at least one valid owner is set.
Similarly, the function removeOwner will not allow its last owner to be removed because, in such situation, it would call changeRequirement with
zero as a parameter, which is not a validRequirement and would end up triggering a revert on the removeOwner call.
However, the function replaceOwner does not check for the validity of the incoming owner address, which means that an address such as 0x0
could be set for a new owner. This will produce the unwanted situation described above, where funds cannot be withdrawn from the wallet.
Consider using the notNull modifier in replaceOwner to avoid such a situation.

Low Severity

Duplicate code for confirmation count

The function getConfirmationCount iterates over the owners array and verifies that each owner has confirmed a given transaction id, counting
the total verifications. The function isConfirmed does the same thing, but finally checks if the total count is larger or equal to the wallet’s
required approval count for confirming a transaction.
Consider calling getConfirmationCount from within isConfirmed to avoid code duplication.

Outdated Solidity version

The latest solidity version at the time of this writing is 0.4.20. The contract uses 0.4.18 and truffle is setup for version 3.4.9, which uses the 0.4.15
solidity compiler. As a result, all tests fail because the version specified in solidity is larger than the available compiler version.
Also, despite the solidity version of the contract being 0.4.18, deprecated usage of constant in functions still exists.
Consider updating the solidity version in the contracts to 0.4.20, updating to truffle version 4.0.0, and replacing all usage of constant in functions
to view (or pure if applicable).

Functions that return variable sized arrays should be external

As addressed in the solidity documentation, section “Can you return an array or a string from a solidity function call?“, functions can return variable
sized data only in external calls. The functions getConfirmations and getTransactionIds have public visibility, which implies that they can be
called internally. Even though such an internal call does not exist in the contract, a future modification may add one, producing unexpected
results.

https://github.com/maraoz/MultiSigWallet/blob/585863178330d3c64855d596caba2b7f3271a423/contracts/MultiSigWallet.sol#L156
https://github.com/maraoz/MultiSigWallet/blob/585863178330d3c64855d596caba2b7f3271a423/contracts/MultiSigWallet.sol#L90
https://github.com/maraoz/MultiSigWallet/blob/585863178330d3c64855d596caba2b7f3271a423/contracts/MultiSigWallet.sol#L136
https://github.com/maraoz/MultiSigWallet/blob/585863178330d3c64855d596caba2b7f3271a423/contracts/MultiSigWallet.sol#L149
https://github.com/maraoz/MultiSigWallet/blob/585863178330d3c64855d596caba2b7f3271a423/contracts/MultiSigWallet.sol#L156
https://github.com/maraoz/MultiSigWallet/blob/585863178330d3c64855d596caba2b7f3271a423/contracts/MultiSigWallet.sol#L289
https://github.com/maraoz/MultiSigWallet/blob/585863178330d3c64855d596caba2b7f3271a423/contracts/MultiSigWallet.sol#L254
http://solidity.readthedocs.io/en/develop/frequently-asked-questions.html
https://github.com/maraoz/MultiSigWallet/blob/585863178330d3c64855d596caba2b7f3271a423/contracts/MultiSigWallet.sol#L327
https://github.com/maraoz/MultiSigWallet/blob/585863178330d3c64855d596caba2b7f3271a423/contracts/MultiSigWallet.sol#L351

The bodies of the mentioned functions do construct and return fixed-size arrays, in what might be an attempt from the developer to mitigate this
problem.
Consider simplifying the code by not using fixed sized arrays at all, and changing the visibility of the functions to external .

Notes & Additional Information

The contract never specifies uint resolution — It is a good practice to specify weather a uint is uint256 , uint64 , etc, in all cases. Doing so
has multiple benefits such as reducing storage space, avoiding overflows, etc.

Inconsistent variable naming conventions — The contract adopts the convention of using underscore in function parameters in order to
distinguish them from contract members. However, it does so partially. For example, the function changeRequirement uses underscore, while
addOwner doesn’t. Consider using underscore in all method parameters.

The code would benefit from minor renaming to make it more explicit and easier to read. For example, the confirmed modifier, which checks
if a given transaction id has been confirmed by a given owner, could be renamed to txConfirmedByOwner . Similarly the modifier
notConfirmed could be renamed to txNotConfirmedByOwner . The central variable required determines the minimum number of owner

confirmations that a transaction needs for approval, and a name like requiredConfirmations would be clearer. Finally, changeRequirement
could be changed to changeRequiredConfirmations .

getTransactionIds does not check if to is larger than from .

The fallback function should explicitly declare public visibility.

Conclusion

No critical severity and one high severity issue was found and explained, along with recommendations on how to fix it. Some changes were
proposed to follow best practices and reduce potential attack surface.

Note that as of the date of publishing, the above review reflects the current understanding of known security patterns as they relate to the Gnosis
multisig wallet contracts. For general information about smart contract security, check out our thoughts _here._

Security Audits

If you are interested in smart contract security, you can continue the discussion in our forum, or even better, join the team

If you are building a project of your own and would like to request a security audit, please do so here.

https://github.com/maraoz/MultiSigWallet/blob/585863178330d3c64855d596caba2b7f3271a423/contracts/MultiSigWallet.sol#L175
https://github.com/maraoz/MultiSigWallet/blob/585863178330d3c64855d596caba2b7f3271a423/contracts/MultiSigWallet.sol#L122
https://github.com/maraoz/MultiSigWallet/blob/585863178330d3c64855d596caba2b7f3271a423/contracts/MultiSigWallet.sol#L95
https://blog.zeppelin.solutions/onward-with-ethereum-smart-contract-security-97a827e47702
http://forum.openzeppelin.com/
http://openzeppelin.com/jobs
http://openzeppelin.com/security-audits

RELATED POSTS

Exploring upgradeability

governance in ZeppelinOS

with a Gnosis MultiSig

With the first release of ZeppelinOS two
months ago, the key issue we wanted to
tackle was…

READ MORE

GUIDES

by Santiago Palladino

Announcing the launch of

ZeppelinOS

Today we’re excited to announce the first
mainnet release of ZeppelinOS, a platform
for developing,…

READ MORE

ANNOUNCEMENTS PRODUCT RELEASES

by Demian Brener

Products

Contracts

Defender

Security

Security Audits

Learn

Docs

Forum

Ethernaut

Company

Website

About

Jobs

Logo Kit

https://blog.openzeppelin.com/exploring-upgradeability-governance-in-zeppelinos-with-a-gnosis-multisig/
https://blog.openzeppelin.com/exploring-upgradeability-governance-in-zeppelinos-with-a-gnosis-multisig/
https://blog.openzeppelin.com/exploring-upgradeability-governance-in-zeppelinos-with-a-gnosis-multisig/
https://blog.openzeppelin.com/category/guides/
https://blog.openzeppelin.com/author/palla/
https://blog.openzeppelin.com/announcing-the-launch-of-zeppelinos/
https://blog.openzeppelin.com/announcing-the-launch-of-zeppelinos/
https://blog.openzeppelin.com/announcing-the-launch-of-zeppelinos/
https://blog.openzeppelin.com/category/announcements/
https://blog.openzeppelin.com/category/announcements/product-releases/
https://blog.openzeppelin.com/author/demibrener/
http://openzeppelin.com/
http://openzeppelin.com/contracts
https://openzeppelin.com/defender
http://openzeppelin.com/security-audits
http://docs.openzeppelin.com/
http://forum.openzeppelin.com/
http://ethernaut.openzeppelin.com/
http://openzeppelin.com/
http://openzeppelin.com/about
http://openzeppelin.com/jobs
https://openzeppelin.com/images/OpenZeppelin_brand.zip

© OpenZeppelin 2017-2019 | Privacy | Terms of Service

http://openzeppelin.com/privacy
http://openzeppelin.com/tos
http://github.com/openzeppelin
http://twitter.com/openzeppelin
https://zpl.in/discord
https://blog.openzeppelin.com/feed/

