

Customer: Blank

Date: March 5th, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT systems and the
intellectual property of the Customer as well as information about potential
vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the
Customer, or it can be disclosed publicly after all vulnerabilities fixed - upon a

decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for

Approved by Andrew Matiukhin | CTO Hacken OU

Type Token

Platform Ethereum / Solidity

Methods Manual Review

Repository https://github.com/Blank-Wallet/Blank-token/blob/master/BLANK.sol

Commit cff1a5088a6b9c45caa597080e769f5921e9daf1

Deployed
contract

Timeline 4 MARCH 2021 – 5 MARCH 2021

Changelog 5 MARCH 2021 – INITIAL AUDIT

https://github.com/Blank-Wallet/Blank-token/blob/master/BLANK.sol

Table of contents

Introduction .. 4

Scope .. 4

Executive Summary ... 5

Severity Definitions ... 6

AS-IS overview .. 7

Conclusion .. 14

Disclaimers .. 15

Introduction

Hacken OÜ (Consultant) was contracted by Blank (Customer) to conduct a Smart
Contract Code Review and Security Analysis. This report presents the findings of
the security assessment of Customer's smart contract.

Scope

The scope of the project is smart contracts in the repository:
Contract deployment address:
Repository: https://github.com/Blank-Wallet/Blank-token/blob/master/BLANK.sol
Commit: cff1a5088a6b9c45caa597080e769f5921e9daf1
Files:

BLANK.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that are
considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Assets integrity

▪ User Balances manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart has issues that should be

fixed. The code quality should be increased.

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented in
the Audit overview section. A general overview is presented in AS-IS section, and
all found issues can be found in the Audit overview section.

Security engineers found 3 low issues during the audit.

Graph 1. The distribution of vulnerabilities

Low
100%

Insecure Poor secured Secured Well-secured

You are here

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can
lead to assets loss or data manipulations.

High

High-level vulnerabilities are difficult to exploit; however, they also
have a significant impact on smart contract execution, e.g., public
access to crucial functions

Medium
Medium-level vulnerabilities are important to fix; however, they
can't lead to assets loss or data manipulations.

Low
Low-level vulnerabilities are mostly related to outdated, unused,
etc. code snippets that can't have a significant impact on
execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations, and info
statements can't affect smart contract execution and can be
ignored.

AS-IS overview

BLANK.sol

Description

Token interfaces and implementations are inherited from OpenZeppelin
Contracts.

Imports

BLANK contract has the following imports:

• abstract contract Context

• interface IERC20

Usages

BLANK contract has no custom usages.

Structs

BLANK contract has no data structures.

Enums

BLANK contract has no custom enums.

Events

BLANK contract has no events.

Modifiers

BLANK has no custom modifiers.

Fields

BLANK contract has following constants:

• mapping (address => uint256) private _balances;

• mapping (address => mapping (address => uint256)) private _allowances;

• uint256 private _totalSupply;

• string private _name = "Blank Token";

• string private _symbol = "BLANK";

• constructor (uint256 totalSupply_)

Functions

BlankToken has following public functions:

• name
Visibility
public view virtual
Input parameters
None
Constraints
None
Events emit
None
Output

• string memory

• symbol
Visibility
public view virtual
Input parameters
None
Constraints
None
Events emit
None
Output

• String memory

• decimals
Visibility
public view virtual
Input parameters
None
Constraints
None
Events emit
None
Output

• uint8

• totalySupply
Visibility
public view virtual override
Input parameters
None
Constraints
None
Events emit
None
Output

• uint256

• balansOf
Visibility
public view virtual override
Input parameters

• address account
Constraints
None
Events emit
None
Output

• uint256

• transfer
Visibility
public view virtual override
Input parameters

• address recipient

• uint256 amount
Constraints
None
Events emit
None
Output

• bool

• allowance
Visibility
public view virtual override
Input parameters

• address owner

• address spender
Constraints
None
Events emit
None
Output

• uint256

• approve
Visibility
public view virtual override
Input parameters

• address spender

• uint256 amount
Constraints
None
Events emit
None
Output

• bool

• transferFrom
Visibility
public view virtual override
Input parameters

• address sender

• address recipient

• uint256 amount
Constraints
None
Events emit
None
Output

• bool

• burn
Visibility
public virtual
Input parameters

• uint256 amount
Constraints
None

Events emit
None
Output

 None

• increaseAllowance
Visibility
public virtual
Input parameters

• address spender

• uint256 addedValue
Constraints
None
Events emit
None
Output

• bool

• decreaseAllowance
Visibility
public virtual
Input parameters

• address spender

• uint256 subtractedValue
Constraints
None
Events emit
None
Output

• bool

• _transfer
Visibility
internal virtual
Input parameters

• address sender

• address recipient

• uint256 amount
Constraints
None
Events emit

• Transfer(sender, recipient, amount);

Output
None

• _burn
Visibility
internal virtual
Input parameters

• address account

• uint256 amount
Constraints
None
Events emit

• Transfer(account, address(0), amount);
Output

 None

• _approve
Visibility
internal virtual
Input parameters

• address owner

• address spender

• uint256 amount
Constraints
None
Events emit

• Approval(owner, spender, amount)
Output

 None

Audit overview

 Critical

No critical issues were found.

 High

No high severity issues were found.

 Medium

No medium severity issues were found.

 Low

1. BLANK.sol:49, :53, :57, :61, :65, :69, :74, :78, :83, :93, :97, :102 - wrong
function visibility. Prefer external to public visibility level. A function with
public visibility modifier that is not called internally. Changing visibility
level to external increases code readability. Moreover, in many cases
functions with external visibility modifier spend less gas comparing to
functions with public visibility modifier.

2. BLANK.sol:110, :122, :133 - wrong function visibility. Those functions are
declared as internal, but there is nothing inheritance of this contract. If
functions will live only inside the contract, they could be declared as
private.

3. BLANK.sol:78 - Using approve function of the ERC-20 token standard. The
approve function of ERC-20 is vulnerable. Using front-running attack one
can spend approved tokens before change of allowance value. Only use
the approve function of the ERC-20 standard to change allowed amount
to 0 or from 0 (wait till transaction is mined and approved). Notice: this is

OpenZeppelin standard.

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools. For the contract, high-level description of functionality was
presented in As-Is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the
reviewed code.

Security engineers found 3 low issues during the audit.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with the
best industry practices at the date of this report, in relation to cybersecurity
vulnerabilities and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on security of the code. It also
cannot be considered as a sufficient assessment regarding the utility and safety
of the code, bugfree status or any other statements of the contract. While we
have done our best in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only - we recommend
proceeding with several independent audits and a public bug bounty program
to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have its vulnerabilities that can lead to hacks. Thus, the audit can't
guarantee the explicit security of the audited smart contracts.

