

Customer: Bent Finance
Date: November 9th, 2021

www.hacken.io

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Bent Finance.

Approved by Andrew Matiukhin | CTO Hacken OU
Type Pools; Pools Manager
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/bent-protocol/bent-public
Commit e05a8890b3f39541e9cc2c267e82661ed0632d18
Technical
Documentation

YES

JS tests YES
Timeline 26 OCTOBER 2021 – 09 NOVEMBER 2021
Changelog 29 OCTOBER 2021 – INITIAL AUDIT

09 NOVEMBER 2021 – SECOND REVIEW

www.hacken.io

Table of contents

Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 8

Audit overview 9

Conclusion 11

Disclaimers 12

 	

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Bent Finance (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contract and its
code review conducted between October 26th, 2021 - October 29th, 2021.

Second code review conducted on November 9th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/bent-protocol/bent-public
Commit:

e05a8890b3f39541e9cc2c267e82661ed0632d18
Technical Documentation: Yes; Bent V1.docx;
 md5: e6db5ead61648cd1bec0e79e35a4efbd
JS tests: Yes; Included: “/test/”
Contracts:

interfaces\convex\IBaseRewardPool.sol
interfaces\convex\IConvexBooster.sol
interfaces\convex\IConvexToken.sol
interfaces\convex\IVirtualBalanceRewardPool.sol
interfaces\curve\curve.sol
interfaces\uniswap\IUniswapV2Factory.sol
interfaces\uniswap\IUniswapV2Pair.sol
interfaces\uniswap\IUniswapV2Router.sol
interfaces\uniswap\IWETH.sol
interfaces\IBentPool.sol
interfaces\IBentPoolManager.sol
libraries\Errors.sol
pools\BentBaseMasterchef.sol
pools\BentBasePool.sol
pools\BentPoolAlusd.sol
pools\BentPoolFrax.sol
pools\BentPoolMIM.sol
pools\BentPoolTriCrypto2.sol
pools\token\BentToken.sol
BentPoolManager.sol

www.hacken.io

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence

▪ Style guide violation
▪ Costly Loop

▪ ERC20 API violation
▪ Unchecked external call

▪ Unchecked math
▪ Unsafe type inference

▪ Implicit visibility level
▪ Deployment Consistency

▪ Repository Consistency
▪ Data Consistency

Functional review

▪ Business Logics Review
▪ Functionality Checks

▪ Access Control & Authorization
▪ Escrow manipulation

▪ Token Supply manipulation
▪ Assets integrity

▪ User Balances manipulation
▪ Data Consistency manipulation

▪ Kill-Switch Mechanism
▪ Operation Trails & Event Generation

	

www.hacken.io

Executive Summary

According to the assessment, the Customer's smart contracts are well-secured. 	

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

As a result of the audit, security engineers found 1 high, 1 medium, and 2
low severity issues.

After the second review security engineers found 1 medium and 1 low severity
issue.

You are here

Insecure Poor secured Secured Well-secured

www.hacken.io

Graph 1. The distribution of vulnerabilities after the audit.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

	

www.hacken.io

Audit overview

 Critical

No critical issues were found.

 High

Possible rewards lost or receive more.

Changing allocPoint in the BentPoolManager.set method while _withUpdate
flag set to false may lead to rewards lost or receiving rewards more
than deserved.

Contracts: BentPoolManager.sol

Function: set

Recommendation: change.

Status: Fixed.

 Medium

Provided tests not passed.

Error: ProviderError: Must be authenticated!

Recommendation: Please make sure tests are running and have at least
95% of branches covered.

Status: recommendation to set “ALCHEMY_ID” in the “.env” file didn’t
change anything. Tests still cannot be run.

 Low

1. Unnecessary operations.

When “allocPoint” is not changed for the pool, there is still an
assignment for a new value, which just consumes gas doing nothing.

www.hacken.io

Contracts: BentPoolManager.sol

Function: set

Recommendation: Please move “totalAllocPoint” and
“poolInfo[_pid].allocPoint” assignment inside the if block checking if
the poolInfo[_pid].allocPoint != _allocPoint.

2. Reading state variable in the loop.

It is insufficient in a gas manner to read state variable in the loop.

Contracts: pools/BentBasePool.sol

Function: pendingReward, _updateAccPerShare, _calcAddedRewards,
_updateUserRewardDebt, _harvest

Recommendation: Please store the value of the rewardPoolsCount into a
local variable to save gas.

Status: Fixed.

	

	

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other issues
in the reviewed code.

As a result of the audit, security engineers found 1 high, 1 medium, and 2
low severity issues.

After the second review security engineers found 1 medium and 1 low severity
issue.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and producing
this report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

