

Audit Report for RAE. March 28, 2019.

Summary
Audit Report prepared by Solidified for RAE covering the token and minting smart contracts
(and their associated components).

Process and Delivery

Three (3) independent Solidified experts performed an unbiased and isolated audit of the below
token swap. The debrief took place on March 28, 2019 and the final results are presented here.

Audited Files
● RaeToken.sol
● RaeMintContract.sol

The files were audited on commit ​83893c9a917926eec2c08183a99e2abbf27ad7db​ and solidity
compiler version ​0.5.0

Intended Behavior
The purpose of these contracts is to implement an ERC20 token with specific bulk minting
functionality

Issues Found

Critical

No critical issues were found.

Audit Report for RAE. March 28, 2019.

Major

1. Ineffective access control can lead to inconsistencies in state,
possibly freezing the minting function

From ​RaeMintContract​:

/**

* @dev create minting contract, passing token contract that will be the target of minting.

* On deployment, deployer of RaeToken contract will be given minterRole. With that minterRole the deployer

will

* assign minterRole to this contract, and finally the deployer will revoke minterRole from himself so

* that this contract is the only possible minter for RaeToken. Owner of this contract will be the only

person

* who can issue mint, bulkMint functions

*/

The contract contains a function that allows its owner to add other minters to the token contract.
This not only violates the description above, but will also allows direct access to the token
contract and this can result in inconsistencies in state, where mintPeriod will differ between the
two contracts.

 If this happens, the mint functions will always revert when halving occurs (because both
contracts will require different ​mintAmounts​).

Recommendation
Consider removing the ​addMinter​ function from ​RaeMintContract​. Also take measures to
ensure the deployer renounces ​minterRole​ as soon as the contracts are deployed.

Refer to Note #2 for additional recommendations around the minting functions.

Amended [04.04.2019]
The issue was fixed and is no longer present in commit
3382f4618ac225996a5cd5c741ce18db47ece240​.

Notes

Audit Report for RAE. March 28, 2019.

2. Consider grouping minting functions

The RaeTokens minting process is divided into two contracts, ​RaeToken​ and
RaeMintContract​, but they share a lot of state and functionality. A better approach is to unify
both functions in the ​RaeMintingContract​, which will call the token's ​mint()​ function directly,
instead of a intermediary function.

Amended [04.04.2019]
RAE has kept the functions separately, but ensured state is not duplicated between contracts,
commit ​3382f4618ac225996a5cd5c741ce18db47ece240​.

3. Violation of Checks, Effects, Interaction pattern

In ​RaeMintContract​, function ​bulkMintAggregator​, the variable ​_mintPeriods​ is set after
the external call to the token takes place. This makes the function vulnerable to a reentrancy. In
this context, this fact has no impact (since the token contract called is trusted), and therefore the
vulnerability is being reported as a note.

Amended [04.04.2019]
The issue was fixed and is no longer present in commit
3382f4618ac225996a5cd5c741ce18db47ece240​.

4. Consider declaring non-changing variables as ​constant

Variables not supposed to change throughout the life of a smart contract, such as ​halveEvery​,
should be declared as ​constant​. This will enforce the value that was present at compile time
and will not allow changes to it.

Amended [04.04.2019]
The issue was fixed and is no longer present in commit
3382f4618ac225996a5cd5c741ce18db47ece240​.

Audit Report for RAE. March 28, 2019.

5. Update compiler version and lock pragma

Contracts should be deployed with the same compiler version and flags that they have been
tested with thoroughly. Locking the pragma helps to ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that might introduce bugs that
affect the contract system negatively.

Also take note that the current floating pragma allows for compilation from 0.5.0 and up,
consider updating to the latest version to avoid the three known bugs since 0.5.0
(​https://solidity.readthedocs.io/en/latest/bugs.html​).

Amended [04.04.2019]
The issue was fixed and is no longer present in commit
3382f4618ac225996a5cd5c741ce18db47ece240​.

6. Consider removing unnecessary imports

Solidity supports multiple inheritance, meaning that one contract can inherit several contracts.
Multiple inheritance introduces ambiguity called Diamond Problem: if two or more base
contracts define the same function, which one should be called in the child contract? Solidity
deals with this ambiguity by using reverse C3 Linearization, which sets a priority between base
contracts.

That way, base contracts have different priorities, so the order of inheritance matters.
Neglecting inheritance order can lead to unexpected behavior.

https://solidity.readthedocs.io/en/latest/bugs.html

Audit Report for RAE. March 28, 2019.

Recommendation
Remove unnecessary inheritances (​ERC20​ and ​ERC20Mintable​ inherited by ​RaeToken
contract).

Amended[04.04.2019]
The issue was fixed and is no longer present in commit
3382f4618ac225996a5cd5c741ce18db47ece240​.

7. Consider declaring functions as ​external

The functions that are not supposed to called within the contracts should be marked as external,
both to avoid unwanted calls and to potentially save gas when dealing with large arrays of data.

Amended [04.04.2019]
The issue was fixed and is no longer present in commit
3382f4618ac225996a5cd5c741ce18db47ece240​.

8. Add reasons for ​revert

Since version ​0.4.22​ of solidity, ​require​ ​statements can include an error string. Consider
adding appropriate error messages to all require statements.

Audit Report for RAE. March 28, 2019.

9. Consider importing interface instead of whole contract

The ​RaeMintContract​ imports the ​RaeToken​, which means the whole token bytecode will be
attached in the deployment code of the mint contract, increasing the gas costs. A more
economic approach is to define a interface for ​RaeToken​ and import such interface to the mint
contract.

Audit Report for RAE. March 28, 2019.

Conclusion

One major issue was found, along with some minor issues that can affect the desired
behavior and it's recommended that they're addressed before proceeding to
deployment.

Disclaimer

Solidified audit is not a security warranty, investment advice, or an endorsement of the

RAE platform or its products. This audit does not provide a security or correctness

guarantee of the audited smart contracts. Securing smart contracts is a multistep

process, therefore running a bug bounty program as a complement to this audit is

strongly recommended.

The individual audit reports are anonymized and combined during a debrief process, in

order to provide an unbiased delivery and protect the auditors of Solidified platform from

legal and financial liability.

Solidified Technologies Inc.

