
Audit Report for Dopex - June 21, 2021

Summary
Audit Report prepared by Solidified covering the Dopex options protocol smart contracts.

Process and Delivery
Three (3) independent Solidified experts performed an unbiased and isolated audit of the code
in several rounds. The debrief took place on 24 May 2021.

Audited Files

The source code has been supplied in an audit-specific branch of the following source code
repository:

https://github.com/dopex-io/core-contracts/tree/develop

UPDATE: Fixes were received on 15 June 2021

Commit number: 9e6121fa07aef77700692dcc55ce0fc01535d6b4

The scope of the audit was limited to the following files:

contracts
├── MockContract.sol
├── dopex
│ ├── Dopex.sol
│ ├── asset-swapper
│ │ ├── AssetSwapper.sol
│ │ └── IAssetSwapper.sol
│ ├── delegator
│ │ └── Delegator.sol
│ ├── governance
│ │ └── GovernanceStaking.sol
│ ├── interfaces
│ │ ├── IUniswapV2Router01.sol
│ │ └── IUniswapV2Router02.sol
│ ├── libraries
│ │ └── OptionPoolHelper.sol
│ ├── margin
│ │ └── Margin.sol
│ ├── options
│ │ ├── OptionsContract.sol
│ │ ├── OptionsFactory.sol
│ │ └── interfaces
│ │ ├── IOptionsContract.sol
│ │ └── IOptionsFactory.sol
│ ├── oracle
│ │ ├── DopexOracle.sol

https://github.com/dopex-io/core-contracts/tree/develop

Audit Report for Dopex - June 21, 2021

│ │ ├── IVJobRequest.sol
│ │ ├── PriceJobRequest.sol
│ │ ├── interfaces
│ │ │ ├── IDopexOracle.sol
│ │ │ └── IJobRequest.sol
│ │ └── uniswap-oracle
│ │ ├── BlockVerifier.sol
│ │ ├── IUniswapV2Pair.sol
│ │ ├── MerklePatriciaVerifier.sol
│ │ ├── Rlp.sol
│ │ ├── UQ112x112.sol
│ │ └── UniswapOracle.sol
│ ├── pools
│ │ ├── OptionPool
│ │ │ ├── OPCore.sol
│ │ │ ├── OPStats.sol
│ │ │ ├── OPWithdraw.sol
│ │ │ └── OptionPool.sol
│ │ ├── OptionPoolBroker
│ │ │ ├── OptionPoolBroker.sol
│ │ │ ├── OptionPricing.sol
│ │ │ └── libraries
│ │ │ ├── ArrayHelper.sol
│ │ │ ├── BlackScholes.sol
│ │ │ └── OptionPoolBrokerLibrary.sol
│ │ ├── OptionPoolFactory.sol
│ │ ├── OptionPoolRebates.sol
│ │ ├── VolPool.sol
│ │ └── interfaces
│ │ └── IVolPool.sol
│ ├── rewards
│ │ └── DopexRewards.sol
│ └── token
│ ├── DpxToken.sol
│ ├── ERC20Factory.sol
│ ├── RdpxToken.sol
│ └── UsdtToken.sol
├── erc20
│ ├── ERC20.sol
│ └── IERC20.sol
└── libraries

├── ABDKMathQuad.sol
├── BokkyPooBahsDateTimeLibrary.sol
└── SafeMath.sol

Intended Behavior
The smart contracts implement a permissionless options protocol. Option pools are created
which allow users to deposit base and quote assets. The smart contracts include a Uniswap

integration, and a governance token and protocol.

Audit Report for Dopex - June 21, 2021

Code Complexity and Test Coverage
Smart contract audits are an important step to improve the security of smart contracts
and can find many issues. However, auditing complex codebases has its limits and a
remaining risk is present (see disclaimer).

Users of a smart contract system should exercise caution. In order to help with the
evaluation of the remaining risk, we provide a measure of the following key indicators:
code complexity, code readability, level of documentation, and test coverage.

Note, that high complexity or lower test coverage does equate to a higher risk.
Certain bugs are more easily detected in unit testing than a security audit and
vice versa. It is, therefore, more likely that undetected issues remain if the test
coverage is low or non-existent.

Criteria Status Comment

Code complexity High -

Code readability and clarity Low -

Level of Documentation Low -

Test Coverage Medium -

Audit Report for Dopex - June 21, 2021

Issues Found

Solidified found that the Dopex contracts contain 2 critical issues, 3 major issues, 5
minor issues, in addition to 2 informational notes.

Two general warnings have been added.

We recommend all issues are amended, while the notes are up to the team’s discretion,
as they refer to best practices.

Issue # Description Severity Status

1 Complex Architecture with several parts that
appear unfinished

Warning Acknowledged

2 Mathematical Implementation of Black
Scholes/Pricing could not be Validated

Warning Resolved

3 OptionPool.sol: Inability for Pool to be marked
ready until all previous options contracts expire
leads to griefing issue

Critical Resolved

4 OPCore: getOrAddOptionsContract() lacks
access control, leading to a number of issues

Critical Resolved

5 Missing checks for ERC-20 return values
throughout the codebase

Major Resolved

6 OptionPricing.sol: Time threshold is always zero
and described inconsistently

Major Acknowledged

7 Protocol is unsafe with ERC-777 tokens and
susceptible to malicious ERC-20
implementations

Major Resolved

8 DpxToken.sol and OPStats.sol: Potentially
unbounded loop iteration

Major Acknowledged

9 IVJobRequest.sol and PriceJobRequest.sol:
Chainlink oracles shadow superclass oracle
address

Minor Acknowledged

Audit Report for Dopex - June 21, 2021

10 Order of arithmetic operation may decrease
precision

Minor Acknowledged

11 assetSwapper.sol: Payable function may lead to
stuck ETH, since it does not process ETH

Minor Resolved

12 Dopex.sol: Governance operations lack zero
checks

Minor Resolved

13 OptionPricing.sol: Penalties tracker is never
used

Minor Resolved

14 Duplicate Libraries Note Resolved

15 OPWithdraw.sol: Contract inherits unnecessary
contracts

Note Resolved

Audit Report for Dopex - June 21, 2021

Warnings

1. Complex Architecture with several parts that appear
unfinished

The code organization is very complex, leading to a large number of contracts with a complex
inheritance tree (which is a cyclic graph in places). In several places, this seems to be the result
of architectural changes. There are also a number of unused constructs (see issues below),
contradictory or unrelated comments, and hard-coded values. Whilst the protocol seems well
thought out, the implementation seems unfished and not ready for deployment. One particular
component that seems unfinished is the governance module. Whilst there are many
governance-only functionalities, it is unclear who can call these since the governance contract is
unimplemented.

Recommendation
Consider simplifying the overall architecture and targeting a staged release.

Update
Team reply: “We have simplified the overall platform code architecture a lot since the
recommendation and have also added a Timelock contract for governance functions. The code
still remains fairly complex due to the complexity of the platform.”

2. Mathematical Implementation of Black Scholes/Pricing could
not be Validated

The mathematical model used by the options protocol has not been specified outside the
codebase. It has therefore not been possible for the auditor team to verify that the
implementation corresponds to the specification. The overall arithmetic implementation uses a
number of hard-coded constants and has a large number of deeply nested equations. A
substantial risk, therefore, remains, in terms of the validity of the implementation. This applies
particularly to the pricing model implemented in OptionPricing.sol.

Recommendation

Audit Report for Dopex - June 21, 2021

Consider providing a clear specification for the mathematical model, using a cleaner nesting
model with well-named constants. It is also often a good idea to generate Solidity math
implementations from a higher-level programming language, for example, a Python script,
particularly when the safeMath library is used.

Update
Team reply: “We have added comments and references through the solidity black scholes
library. The black scholes model is sufficiently complicated and hence the code to implement it
is too. The hard coded values are used for computations in the formula in Solidity (and other
programming languages).”

Critical Issues

3. OptionPool.sol: Inability for Pool to be marked ready until all
previous options contracts expire leads to griefing issue

The fact that an OptionPool contract cannot be marked as ready until all contracts in the
previous epoch are manually set to expire can be griefed by endlessly entering into low-value
options each epoch that cost more in gas to execute than the amount redeemed from their
vaults. Even with the minimumOptionPrice guard, this can create an arbitrary gas burden to
finalize an epoch.

Recommendation
The functionality should be modified such that the entire pool’s funds are not locked from
withdrawal if not all previous contracts have been manually marked as expired.

Update
Team reply: “We have changed the way collateral is locked into an options contract. Since the
OptionPool is the only contract that is able to interact with the OptionsContract (to create state
changes), we have made it so that the OptionPool tracks collateral locked in for each
OptionsContract. This way redeeming of the vault balance is not needed and hence it eliminates
the requirement of expiring option contracts completely”

Audit Report for Dopex - June 21, 2021

4. OPCore: getOrAddOptionsContract() lacks access control,
leading to a number of issues

The function getOrAddOptionsContract() is completely unprotected and can be called by
anyone. This could be exploited in a grievance attack, by someone adding a large number of
option contracts without providing collateral, and rendering the epoch unrealizable due to
making redeemVaultBalance() revert. This is particularly critical since option contract ids can
collide meaning several option contracts with the same base- and quote assets cannot exit for
the same timeframe.

Recommendation
Limit the function to be only callable from the broker contract.

Major Issues

5. Missing checks for ERC-20 return values throughout the
codebase

Throughout the codebase, the ERC-20 return values are ignored when making token transfers.
Instead, the code assumes that ERC-20 token implementations revert on error. However, this is
not always the case and there are a large number of tokens that return false instead of
reverting.
This is an issue when interacting with external tokens.

Recommendation
It is recommended to check the return value of token transfers or use OpenZeppelin’s
SafeERC20 extension.

6. OptionPricing.sol: Time threshold is always zero and
described inconsistently

The variable timeThreshold is never initialized and always remains zero, resulting the
following statement used when a quote is proposed never applying:

Audit Report for Dopex - June 21, 2021

if (timeThreshold >

block.timestamp.sub(proposedQuotes[msg.sender][_optionPool].lastUpdated))

In addition, the comment in the variable declaration does not match the comment in the use of
the variable, casting doubts on its purpose.

Recommendation
initialize the variable and clarify its usage.

Update
Team reply: “The OptionPricing contract is a work in progress and this variable is not finalised
and may not exist in the final version of the contract.”

7. Protocol is unsafe with ERC-777 tokens and susceptible to
malicious ERC-20 implementations

The protocol makes several calls to external tokens that are susceptible to reentrancy
vulnerabilities due to state changes after the external call. This makes the protocol unsafe in
conjunction with ERC-777 tokens due to the hooks that may be used to inject code and more
vulnerable to malicious tokens. Note, that not all side effects of malicious token implementations
are avoidable but preventing reentrancy protection would significantly reduce the risk.

Reentrancy is an issue in the following functions:

OptionsContract.addERC20Collateral()

OPWithdraw.emergencyWithdrawFromPool()

OptionsContract.purchase()

Recommendation
Avoid state changes after external calls to untrusted code or implement a reentrancy guard.

8. DpxToken.sol and OPStats.sol: Potentially unbounded loop
iteration

Audit Report for Dopex - June 21, 2021

_moveDelegates() in DpxToken and various functions in OPStats iterate over loops that can
potentially become unbounded depending on user behavior, causing the calling code to be
unable to execute.

Recommendation
Implement clear bounds for functions that loop over a range to ensure there is no scenario
where the function can fail to execute.

Update
Team reply: “The OPStats functions do not face unbounded loop issues as they are based of a
checkpoint system and as such the loop in regular conditions will never iterate for more than 2
iterations. The _moveDelegates() function in the DpxToken contract comes from the Sushi
Token (which in turn comes from the Compound token). These additional functions were to be
used in governance and are currently placeholders until we have finalised our governance
mode.”

Minor Issues

9. IVJobRequest.sol and PriceJobRequest.sol: Chainlink oracles
shadow superclass oracle address

The two contracts inherit from ChainlinkClient but shadow the oracle state variable. Whilst
this seems to have no adverse effect on the way the oracle is invoked by specifying the oracle
address explicitly, it means that the underlying oracle address is never initialized, which could
lead to some oracle methods not functioning as expected.

Recommendation
Consider setting the superclass oracle address and changing the variable name to avoid
shadowing for better maintainability.

Update
Team reply: “The DopexOracle contract will undergo an overhaul once our L2 porting is
complete”

Audit Report for Dopex - June 21, 2021

10. Order of arithmetic operation may decrease precision

Throughout the codebase, multiplications are performed on the result of division. In integer
arithmetic, this decreases the precision slightly. In some of these cases, the operations are
performed over several lines of code and the small decrease in efficiency might be acceptable
for improved readability. However, in other cases, the operation is performed in a single
statement and reversal would not affect readability.

Recommendation
Consider reversing the order of operations to increase precision where appropriate.

Update
Team reply: “We were unable to find this issue in our codebase.”

11. assetSwapper.sol: Payable function may lead to stuck ETH,
since it does not process ETH

The function swapAsset() is declared payable. However the function does not allow swapping
ETH, nor does the contract provide a means of withdrawing any ETH sent to it, meaning that
any ETH sent to this contract will be stuck.
The comment
// Trade 2: Execute swap of the ERC20 token back into ETH on Sushiswap to

complete the arb

indicates that this might be due to code reuse from a different source.

Recommendation
Consider removing the payable keyword.

12. Dopex.sol: Governance operations lack zero checks

The functions setting various essential parameters by the governance contract do check for
address(0). This is not an important issue, since most operations can be undone, however in
the case of setGovernanceContract(), an address(0) parameter would irrevocably disable
governance.

Recommendation

Audit Report for Dopex - June 21, 2021

Consider adding zero checks, at least in setGovernanceContract().

13. OptionPricing.sol: Penalties tracker is never used

The mapping of penalties is incremented if a user proposes after the threshold, however, the
penalty "score" is never used. The mapping does not have an access modifier, so by default is
private.

Recommendation
Consider either removing the penalty tracker or implement the restrictive consequences
on-chain.

Informational Notes

14. Duplicate Libraries

The codebase includes duplicate libraries. Several versions of SafeMath and ERC20 base
implementations are included. This increases the complexity of the codebase and complicates
maintainability.

Recommendation
Consider cleaning up the codebase to use a single version of libraries for improved
maintainability.

15. OPWithdraw.sol: Contract inherits unnecessary contracts

The OPWithdraw contract inherits from both the OPCore and OPStats. This is unnecessary as
OPStats inherits OPCore.

Recommendation
Consider removing unnecessary inheritance.

Disclaimer

Audit Report for Dopex - June 21, 2021

Solidified audit is not a security warranty, investment advice, or an endorsement of

Dopex or its products. This audit does not provide a security or correctness guarantee

of the audited smart contract. Securing smart contracts is a multistep process, therefore

running a bug bounty program as a complement to this audit is strongly recommended.

The individual audit reports are anonymized and combined during a debrief process, in

order to provide an unbiased delivery and protect the auditors of Solidified platform from

legal and financial liability.

Solidified Technologies Inc.

