
01

Audit Report
July, 2021

https://audits.quillhash.com/smart-contract-audit

Contents

Scope of Audit 01

02

03

04

19

29

30

Techniques and Methods

Issue Categories

Issues Found – Code Review/Manual Testing

Summary

Automated Testing

Disclaimer

050401

The scope of this audit was to analyze and document the MiniDOGE Token
smart contract codebase for quality, security, and correctness.

We have scanned the smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that we considered:

Scope of Audit

Checked Vulnerabilities

Re-entrancy

Timestamp Dependence

Gas Limit and Loops

DoS with Block Gas Limit

Transaction-Ordering Dependence

Use of tx.origin

Exception disorder

Gasless send

Balance equality

Byte array

Transfer forwards all gas

ERC20 API violation

Malicious libraries

Compiler version not fixed

Redundant fallback function

Send instead of transfer

Style guide violation

Unchecked external call

Unchecked math

Unsafe type inference

Implicit visibility level

0502

Techniques and Methods
Throughout the audit of smart contract, care was taken to ensure:

The overall quality of code.
Use of best practices.
Code documentation and comments match logic and expected behaviour.
Token distribution and calculations are as per the intended behaviour
mentioned in the whitepaper.
Implementation of ERC-20 token standards.
Efficient use of gas.
Code is safe from re-entrancy and other vulnerabilities.

The following techniques, methods and tools were used to review all the
smart contracts.

Structural Analysis
In this step we have analyzed the design patterns and structure of smart
contracts. A thorough check was done to ensure the smart contract is
structured in a way that will not result in future problems.
SmartCheck.

Static Analysis
Static Analysis of Smart Contracts was done to identify contract
vulnerabilities. In this step a series of automated tools are used to test
security of smart contracts.

Code Review / Manual Analysis
Manual Analysis or review of code was done to identify new vulnerability
or verify the vulnerabilities found during the static analysis. Contracts were
completely manually analyzed, their logic was checked and compared with
the one described in the whitepaper. Besides, the results of automated
analysis were manually verified.

Gas Consumption
In this step we have checked the behaviour of smart contracts in
production. Checks were done to know how much gas gets consumed and
possibilities of optimization of code to reduce gas consumption.

0203

Tools and Platforms used for Audit
Remix IDE, Truffle, Truffle Team, Ganache, Solhint, Mythril, Slither,
SmartCheck.

Low level severity issues

Informational

Medium level severity issues

High severity issues

Issue Categories

Low level severity issues can cause minor impact and or are just warnings
that can remain unfixed for now. It would be better to fix these issues at
some point in the future.

These are severity four issues which indicate an improvement request, a
general question, a cosmetic or documentation error, or a request for
information. There is low-to-no impact.

The issues marked as medium severity usually arise because of errors and
deficiencies in the smart contract code. Issues on this level could potentially
bring problems and they should still be fixed.

A high severity issue or vulnerability means that your smart contract can be
exploited. Issues on this level are critical to the smart contract’s
performance or functionality and we recommend these issues to be fixed
before moving to a live environment.

Every issue in this report has been assigned with a severity level. There
are four levels of severity and each of them has been explained below.

0404

Number of issues per severity

Introduction

During the period of July 06, 2021 to July 12, 2021 - QuillAudits Team
performed a security audit for MiniDOGE smart contracts.

The code for the audit was taken from following the official link:
https://bscscan.com/
address/0xba07eed3d09055d60caef2bdfca1c05792f2dfad#code

Open

Type High

Closed

Acknowledged

Low

0 0

0

0

1

3

10

0

10

0

2

Medium Informational

https://bscscan.com/address/0xba07eed3d09055d60caef2bdfca1c05792f2dfad#code

0505

1.

Issues Found – Code Review / Manual Testing

High severity issues

Line Code

754-789 // Buy

if(from == uniswapV2Pair){

 removeAllFee();

 _taxFee = _buyTaxFee;

 _liquidityFee = _buyLiquidityFee;

}

// Sell

if(to == uniswapV2Pair){

 removeAll

……

……

…….

 if(from == uniswapV2Pair){

 _taxFee = _addressFees[to]._buyTaxFee;

 _liquidityFee = _addressFees[to]._buyLiquidityFee;

 }

 }

Fees is not restored after a special fee transaction

Description
After a user with special fee enabled does a transaction, any following
transactions will also have the same _taxFee and _liquidityFee which this
user is charged. This happens because the removeAllFee() function
removes the fees and stores it in variables to restore later. But it is never
restored after the transaction.

Remediation
Restore the fee after the transaction with the special fee is complete.

No issues were found

Medium severity issues

Status: Open
The transactions, after a special fee transaction, are still charged the
same fee.

0506

2.

Line Code

1029-1045 for (uint256 j = 0; j < _sellHistories.length; j ++) {

 if (_sellHistories[j].time >= maxStartTimeForHistories) {

 _sellHistories[i].time = _sellHistories[j].time;

 _sellHistories[i].bnbAmount = _sellHistories[j].bnbAmount;

 i = i + 1;

 }

}

uint256 removedCnt = _sellHistories.length - i;

for (uint256 j = 0; j < removedCnt; j ++) {

 _sellHistories.pop();

}

Costly loops leading to DOS attack

Description
The _sellHistories[] array is used in a for loop in the
_removeOldSellHistories() function. Elements are inserted into this array,
whenever there is a transfer of tokens to the UniswapV2Pair address.
This can be done by any user multiple times to increase the array size.

Whenever _removeOldSellHistories() function is called, the array is
traversed, and some elements are updated. If the size of the array is very
large, the transaction’s gas usage will exceed the block gas limit, and the
transaction will fail.

Remediation
We recommend having a check on the size of _sellHistories[] array. The
logic in the _removeOldSellHistories() function should be changed to
prevent such a scenario.

0507

Status: Closed
The team has set _isAutoBuyBack to false, which means the
_removeOldSellHistories() function is never called.
Note: This setting can be changed again by the owner at any point of
time in the future.
Comments from Auditee: “We have disabled _isAutoBuyBack to avoid
the _sellHistories array size issue.”

3.

Line Code

691-697 if (to == uniswapV2Pair && balanceOf(uniswapV2Pair) > 0) {

 SellHistories memory sellHistory;

 sellHistory.time = block.timestamp;

 sellHistory.bnbAmount = _getSellBnBAmount(amount);

 _sellHistories.push(sellHistory);

}

AutoBoost feature can be exploited

Description
A sell transaction or the swap from MiniDOGE to ETH will have to ==
uniswapV2Pair . But any user can exploit this by sending normal
transactions to uniswapV2Pair address. This will fill the _sellHistories[]
array with incorrect entries.
Any user can send in very small amounts of tokens to fill up the
_sellHistories[] array, for _buyBackTimeInterval minutes. And when the
_isAutoBuyBack == true , _bBSLimitMax will be the average of
transactions in the last _buyBackTimeInterval minutes. And due to this,
the tokens bought back with the buyBackTokens() function will be less.
This can lead to token price manipulation.

Remediation
We recommend changing the logic used to determine a token sale.
In the _bBSLimitMax calculation, taking the average of the last few
transactions can be used by a malicious user to manipulate the token
price.

Status: Acknowledged by the Auditee
Comments from Auditee: “We understand the risks of this possible
exploitation and are monitoring specifically for it.”

0508

.

Line Code

572-575

586-590

 function transfer(address recipient, uint256 amount) public override

returns (bool) {

 _transfer(_msgSender(), recipient, amount);

 return true;

 }

 function transferFrom(address sender, address recipient, uint256

amount) public override returns (bool) {

 _transfer(sender, recipient, amount);

 _approve(sender, _msgSender(), _allowances[sender]

[_msgSender()].sub(amount, "ERC20: transfer amount exceeds

allowance"));

 return true;

 }

Missing Check for Reentrancy Attack4.

Description
Calling MiniDOGE.transfer() and MiniDOGE.transferFrom() might trigger
function
uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTo
kens() and
uniswapV2Router.swapExactETHForTokensSupportingFeeOnTransferTo
kens() , which is implemented by a third party at uniswapV2Router. If
there are vulnerable external calls in uniswapV2Router, reentrancy
attacks could be conducted because these two functions have state
updates and event emits after external calls.

The scope of the audit would treat the third-party implementation at
uniswapV2Router as a black box and assume its functional correctness.
However, third parties may be compromised in the real world that leads
to assets lost or stolen.

Remediation
We recommend applying OpenZeppelin ReentrancyGuard library -
nonReentrant modifier for the aforementioned functions to prevent
reentrancy attacks.

Status: Acknowledged by the Auditee

0509

Centralization Risks5.

Description
The role owner has the authority to
 update settings (transaction fees and addresses)
 manage the list containing contracts excluding from reward, fee, or
 max transaction limitation.
 withdraw ether from the contract at any point of time.

Remediation
We advise the client to handle the governance account carefully to avoid
any potential hack. We also advise the client to consider the following
solutions:

 with reasonable latency for community awareness on privileged
 operations;
 Multisig with community-voted 3rd-party independent co-signers;
 DAO or Governance module increasing transparency and community
 involvement;

Status: Acknowledged by the Auditee
Comments from Auditee: “We are working on a governance platform to
allow the community to have a voice in these types of decisions. We will
also look at a multiSig wallet to ensure these settings are not
erroneously used by any person.”

0510

Status: Acknowledged by the Auditee

Low level severity issues

Missing Range Check for Input Variable6.

Description
The owner can set the following state variables arbitrary large or small
causing potential risks in fees and anti whale :
 _buyBackMaxTimeForHistories
 _buyBackDivisor
 _buyBackTimeInterval
 _intervalMinutesForSwap
 _taxFee
 _buyTaxFee
 _buyLiquidityFee
 _sellTaxFee
 _sellLiquidityFee
 _liquidityFee
 buyBackSellLimit
 _maxTxAmount
 marketingDivisor
 minimumTokensBeforeSwap

Remediation
We recommend setting ranges and check the above input variables.

Description
When updating the marketing address, it should be checked for zero
address. Otherwise, tokens/ETH sent to the zero address may be burnt
forever.

7.

Line Code

1112-1114 function setMarketingAddress(address _marketingAddress) external

onlyOwner {

 marketingAddress = payable(_marketingAddress);

}

Missing zero address validation

0511

Informational

Remediation
Use a require statement to check for zero address when updating the
marketing address.

Status: Acknowledged by the Auditee

Line Code

499

501

505-509

850-863

bool public _isEnabledBuyBackAndBurn = true;

event RewardLiquidityProviders(uint256 tokenAmount);

event SwapAndLiquify(

 uint256 tokensSwapped,

 uint256 ethReceived,

 uint256 tokensIntoLiqudity

);

function addLiquidity(uint256 tokenAmount, uint256 ethAmount) private {

 // Approve token transfer to cover all possible scenarios

 _approve(address(this), address(uniswapV2Router), tokenAmount);

 // Add the liquidity

 uniswapV2Router.addLiquidityETH{value: ethAmount}(

 address(this),

 tokenAmount,

 0, // Slippage is unavoidable

 0, // Slippage is unavoidable

 owner(),

 block.timestamp

);

}

8. Presence of unused code

Description
The program contains code that is not essential for execution, i.e., makes
no state changes and has no side effects that alter data or control flow,
such that removal of the code would have no impact on functionality or
correctness.

0512

Remediation
We recommend removing the unused code.

Status: Acknowledged by the Auditee

Status: Acknowledged by the Auditee

9. Missing Events for Significant Transactions

Description
The missing event makes it difficult to track off-chain liquidity fee
changes. An event should be emitted for significant transactions calling
the following functions:

Remediation
We recommend emitting an event to log the update of the variables.

setMarketingAddress
setNumTokensSellToAddToBuyBack
setMarketingDivisor
setMaxTxAmount
setBuyBackSellLimit
setLiquidityFeePercent
setSellFee
setBuyFee
setTaxFeePercent
SetSwapMinutes
SetBuyBackRangeRate
SetBuyBackTimeInterval
SetBuyBackDivisor
SetBuyBackMaxTimeForHistories
includeInFee
excludeFromFee

0513

10.

11.

Missing Events for Significant Transactions

State variables that could be declared constant

pragma solidity ^0.8.4;

_decimals
_tTotal
_isEnabledBuyBackAndBurn
_name
deadAddress
_symbol

Description
Contracts should be deployed using the same compiler version/flags
with which they have been tested. Locking the pragma (for e.g., by not
using ^ in pragma solidity 0.8.0) ensures that contracts do not
accidentally get deployed using an older compiler version with unfixed
bugs.

Remediation
Lock the pragma version.

Description
The above constant state variables should be declared constant to save
gas.

Remediation
Add the constant attributes to state variables that never change.

Status: Acknowledged by the Auditee

Status: Acknowledged by the Auditee

12.

Line Code

508 tokensIntoLiqudity

Variable Typos

0514

Description
There are typos in the above variables.

Remediation
We recommend correcting and changing tokensIntoLiqudity to
tokensIntoLiquidity.

Status: Acknowledged by the Auditee

Status: Acknowledged by the Auditee

Status: Acknowledged by the Auditee

13. Conformance to Solidity naming conventions

Description
In the contract, many function names were found to be starting with
capital letters. Functions other than constructors should use mixedCase.
Examples: getBalance, transfer, verifyOwner, addMember, changeOwner

Remediation
Follow the Solidity naming convention.

Description
The Visibility of the inSwapAndLiquify variable is not defined. Labeling
the visibility explicitly makes it easier to catch incorrect assumptions
about who can access the variable.
The default is internal for state variables, but it should be made explicit.

Remediation
We recommend adding the visibility for the state variable of
inSwapAndLiquify.

Variables can be specified as being public, internal or private. Explicitly
define visibility for all state variables.

14.

Line Code

495 bool inSwapAndLiquify;

State Variable Default Visibility

0515

Status: Acknowledged by the Auditee

15. Public function that could be declared external

Description
The following public functions that are never called by the contract
should be declared external to save gas:

Remediation
Use the external attribute for functions never called from the contract.

Description
As many tokens do not follow the ERC20 standard faithfully, they may
not return a bool variable in this function's execution, meaning that
simply expecting it can cause incompatibility with these types of tokens.

deliver()
reflectionFromToken()
totalFees()
GetBuyBackTimeInterval()
GetSwapMinutes()
setBuyBackEnabled()
setAutoBuyBackEnabled()
transferForeignToken()
changeRouterVersion(address)

16.

Line Code

1168-1172 function transferForeignToken(address _token, address _to) public

onlyOwner returns(bool _sent){

 require(_token != address(this), "Can't let you take all native token");

 uint256 _contractBalance =

IERC20(_token).balanceOf(address(this));

 _sent = IERC20(_token).transfer(_to, _contractBalance);

}

ERC20 transfer() does not return boolean

0516

Remediation
Use SafeERC20 provided by the OpenZeppelin library for IERC20. And
use the safeTransfer() function for token transfers. The OpenZeppelin
implementation optionally checks for a return value which makes it
compatible with all ERC20 token implementations.

Status: Acknowledged by the Auditee

Status: Acknowledged by the Auditee

17.

Line Code

1145-1147

1174-1177

function transferToAddressETH(address payable recipient, uint256

amount) private {

 recipient.transfer(amount);

}

function Sweep() external onlyOwner {

 uint256 balance = address(this).balance;

 payable(owner()).transfer(balance);

}

Avoid using .transfer() to transfer Ether

Description
Although transfer() and send() have been recommended as a security
best-practice to prevent reentrancy attacks because they only forward
2300 gas, the gas repricing of opcodes may break deployed contracts.
For reference, read more.

Remediation
Use .call{ value: … }("") instead, without hardcoded gas limits along with
checks-effects-interactions pattern or reentrancy guards for reentrancy
protection.

https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/

0517

Functional test

Function Names Testing results

transfer()

transferFrom()

approve()

increaseAllowance()

decreaseAllowance()

deliver()

reflectionFromToken()

tokenFromReflection()

excludeFromReward()

includeFromReward()

excludeFromFee()

includeInFee()

setSwapAndLiquifyEnabled()

setBuyBackEnabled()

setAutoBuyBackEnabled()

changeRouterVersion()

transferForeignToken()

SetBuyBackMaxTimeForHistories()

SetBuyBackDivisor()

SetBuyBackTimeInterval()

FAILED

FAILED

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

0518

Function Names Testing results

SetBuyBackRangeRate()

SetSwapMinutes()

setTaxFeePercent()

setBuyFee()

setSellFee()

setLiquidityFeePercent()

setBuyBackSellLimit()

setMaxTxAmount()

setMarketingDivisor()

setNumTokensSellToAddToBuyBack()

setMarketingAddress()

prepareForPreSale()

afterPreSale()

Sweep()

setAddressFee()

setBuyAddressFee()

setSellAddressFee()

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

0519

Automated Testing

Slither

0520

0521

0522

0523

0524

0525

0526

0527

0528

Results
No major issues were found. Some false positive errors were reported by
the tool. All the other issues have been categorized above according to
their level of severity.

0529

Disclaimer

Quillhash audit is not a security warranty, investment advice, or an
endorsement of the MiniDOGE platform. This audit does not provide a
security or correctness guarantee of the audited smart contracts. The
statements made in this document should not be interpreted as investment
or legal advice, nor should its authors be held accountable for decisions
made based on them. Securing smart contracts is a multistep process. One
audit cannot be considered enough. We recommend that the MiniDOGE
Team put in place a bug bounty program to encourage further analysis of
the smart contract by other third parties.

0530

Closing Summary

Overall, smart contracts are very well written and adhere to guidelines.

No instances of Integer Overflow and Underflow vulnerabilities or Back-
Door Entry were found in the contract, but relying on other contracts might
cause Reentrancy Vulnerability.

Numerous issues were discovered during the audit. The MiniDOGE team has
acknowledged the issues.

17

https://audits.quillhash.com/smart-contract-audit
https://audits.quillhash.com/smart-contract-audit

