

Audit of The DuckDao Contracts

a report of findings by

Van Cam Pham, PhD

innovative fortuna iuvat
December 15th, 2020

Table of Contents

Document Info 1
Contact 2

Executive Summary 3

Findings
Duck token cannot be traded on Uniswap 0​4
The owner of the PoolController contract should be transferred to governance 06
Function addPeriod should check for startingBlock value 07
Gas consumption can be too high 08
Function calculateDuckTokensForMint causes updatePool to mint more DLC than
expected. 09
Function addRevenue has to transfer tokens from the revenue source to the contract 12
Unit Tests are insufficient 14
The owner of the DuckToken contract should be transferred to PoolController 1​5
Function claimRevenue can optimize gas 1​6

Conclusion 1​7

Disclaimer 1​7
innovative fortuna iuvat

1

Document Info

Contact
For more information on this report, contact The Arcadia Media Group Inc.

2

Client DuckDao

Title Smart Contract Audit of DuckDao Contracts

Auditors Van Cam Pham, PhD

Edited By Joel Farris

Approved By Rasikh Morani

Rasikh Morani

(972) 543-3886

rasikh@arcadiamgroup.com

https://t.me/thearcadiagroup

Executive Summary
A Representative Party of DuckDAO ("DuckDAO") engaged The Arcadia Group ("Arcadia"), a
software development, research, and security company, to conduct a review of the following
DuckDAO smart contracts on the ​DuckDAO​ repo at Commit
#7b5cba2e3145580a352ccacce040db5428bda5b8.

DuckToken.sol
Pool.sol

PoolController.sol
TokenWrapper.sol

After a first review and report, and discussion of findings with the DuckDAO team, they fixed all
reported issues. Arcadia then performed a second review of the code at commit
#05414a401452b7c684946f16e229f8c6a613de89 specifically regarding only those remediated
issues.

Arcadia completed the reviews using various methods primarily consisting of dynamic and static
analysis. This process included a line by line analysis of the in-scope contracts, optimization
analysis, analysis of key functionalities and limiters, and reference against intended
functionality.

There were 09 issues found, 01 of which were deemed to be ‘critical’, and 03 of which were
rated as ‘high’.

3

Severity Rating Number Of Original
Occurrences

Number Of Remaining
Occurrences

Critical 01 00

High 03 00

Medium 02 00

Low 01 00

Notice 01 01

Informational 01 01

https://github.com/DuckDao/DuckFarming_Contracts

Findings

1. Duck token cannot be traded on Uniswap

The ​DuckToken ​ contract is implemented in order to create the following farming feature:

● A user farms ​DLC ​ in the farming pools by depositing liquidity tokens (​LP ​ token)
generated by providing liquidity to uniswap pairs.

● When the user decides to exit the farming pool and remove liquidity from uniswap, the
DLC ​ token amount should be burned and the user should only receive the other token in
the pair. This is what’s called “one-sided burn farming”.

The implementation is done in the ​DLC DuckToken ​ contract as follows:

● The ​DuckToken ​ contract keeps a list of liquidity pools (Uniswap pairs) addresses.
When there is transfer from one of the pairs, the transferred token will be burned.

● The expected behavior is that when there is liquidity removal from Uniswap, DLC token
will be sent from the Uniswap pairs, thus burning the transferred token.

This is, however, buggy and causes tokens to be untradeable on Uniswap as follows:

● There are two cases in which DLC token is transferred from the liquidity Uniswap pairs:
○ Liquidity Removal of DLC/X pair where X is the other token in the pair. In this

case, DLC is transferred from the corresponding pair to user address.
○ DLC market-buy in Uniswap: X will be transferred from the buyer’s wallet to the

uniswap pair while DLC is transferred from back from the pair to the buyer’s
wallet. In the current implementation, DLC will be burned immediately before
transferring to the buyer’s wallet. This is not the expected behavior as it causes
DLC to be untradable because the buyer will receive no DLC.

● If a user only adds liquidity to the Uniswap pair DLC/X without farming into the farming
pools, the user should be able to withdraw liquidity from Uniswap without having their
DLC tokens burned. However, the current implementation always burns DLC tokens
whenever there is liquidity removal, regardless of whether the user has farmed or not.

Action Recommended:​ As one-side burning is only applied to users who farm in the pool, the
burn mechanism should be intuitively implemented at the pool level in order to differentiate
farmers from liquidity providers only.

4

● DLC-1
● Severity: Critical
● Likelihood: High
● Impact: High

● Target: DucToken.sol,
PoolControlleer.sol

● Category: Token Untradeable
● Finding Type: Dynamic

The farming pool should have a withdraw function which works as follows:

● Burn the expected withdrawn liquidity token amount in order to remove liquidity from
Uniswap to the farming pool.

● Burn the DLC token removed from Uniswap.
● Send the other withdrawn token to the user.

Due to this issue, the logic for function ​newPool ​ of the ​PoolController ​ contract becomes
invalid, as liquidity pairs should not be added to the ​DLC ​ token contract.

Review of the remediation performed at commit
#05414a401452b7c684946f16e229f8c6a613de89:

● Liquidity pairs have been removed from the DuckToken contract
● The Pool contract now has a function that burns either DLC or DDIM token when a user

decides to withdraw her/his liquidity token from the farming pool.
● The issue has been resolved by the development team​.

5

2. The owner of the PoolController contract should be transferred
to governance

The ownership of the ​PoolController ​ contract should be transferred to a
governance-powered contract in order to avoid centralization when adding a new pool.

Action Recommended:​ Transfer the ownership of the ​PoolController ​ contract to a
governance-powered contract in order to stay decentralized​.

Review of the remediation performed at commit
#05414a401452b7c684946f16e229f8c6a613de89:

● As discussed with the DuckDAO team: the team will operate as a company and the team
believes having control over the governance is good for the company.

● We recommend that whenever the project becomes fully decentralized, the ownership
should be transferred to a community-driven governance contract.

6

● DLC-2
● Severity: Medium
● Impact: Medium

● Target: PoolController.sol
● Category: Ownership
● Finding Type: Dynamic

 ​function ​ ​newPool​(​address ​ lpToken, ​uint ​ startingBlock, ​uint ​[] ​memory ​ blocks, ​uint ​[] ​memory
farmingSupplies) ​public​ onlyOwner {
 Pool pool ​=​ ​new​ ​Pool​(lpToken, startingBlock, blocks, farmingSupplies);

 pools.​push​(pool);

 canMint[​address​(pool)] ​=​ ​true​;

 duck.​addLiquidityPool​(lpToken);

 ​emit​ ​NewPool​(​address​(pool), lpToken);

 }

3. Function ​addPeriod​ should check for ​startingBlock​ value

In the contract ​Pool ​, the function ​addPeriod ​ should check that the input parameter
startingBlock ​ should be greater than the current block so that rewards will only pay in the
future.

function​ ​addPeriod​(​uint​ startingBlock, ​uint​ blocks, ​uint​ farmingSupply) ​public​ onlyController {

 ​if​(periods.length ​>​ ​0​) {

 ​require​(startingBlock ​>

periods[periods.length​-​1​].startingBlock.​add​(periods[periods.length​-​1​].blocks), ​"two periods in the same

time"​);

 }

Action Recommended:​ Add a check for ​startingBlock ​ compared to the current block
number:

function​ ​addPeriod​(​uint​ startingBlock, ​uint​ blocks, ​uint​ farmingSupply) ​public​ onlyController {

 require(startingBlock >= block.number);

 ​if​(periods.length ​>​ ​0​) {

 ​require​(startingBlock ​>

periods[periods.length​-​1​].startingBlock.​add​(periods[periods.length​-​1​].blocks), ​"two periods in the same

time"​);

 }

Review of the remediation performed at commit
#05414a401452b7c684946f16e229f8c6a613de89:

● The issue was resolved by the development team.

7

● DLC-3
● Severity: Low
● Likelihood: Low
● Impact: Low

● Target: Pool.sol
● Category: Informational
● Finding Type: Static
● Lines 123-140

4. Gas consumption can become too high

In the ​Pool ​ contract, there are several for-loops that loop over the list of ​periods ​ and
revenues ​. Those for-loops always start from the beginning till the end of the list. This can cost
high gas if there are many ​periods ​ and ​revenues ​ in the pool.

for​(​uint​ i ​=​ ​0​; i ​<​ periods.length; i​++​) {

 ​if​(​block​.number ​<​ periods[i].startingBlock) {

 ​break​;

 }

 ...

}

for​(​uint​ i ​=​ ​0​; i ​<​ revenues.length; i​++​) {

 ​if​(!revenuesClaimed[userAddress][i]) {

 revenuesClaimed[userAddress][i] ​=​ ​true​;

 ​uint​ userRevenue ​=​ revenues[i].amount.​mul​(user.amount).​div​(revenues[i].totalSupply);

 ​safeRevenueTransfer​(revenues[i].tokenAddress, userAddress, userRevenue);

 }

 }

Action Recommended:​ ​Use storage variables to:

● Save the last checked ​period ​ so that the for-loop only needs to start from the last
checked period

● Save the last checked ​revenue ​ per user so that the for-loop only needs to start from
the last checked ​revenue ​.

By updating the code to use last saved variables, functions ​getCurrentPeriodIndex ​ and
getUserLastRevenue ​ can also be optimized (even those are just view functions).

Review of the remediation performed at commit
#05414a401452b7c684946f16e229f8c6a613de89:

● Limitation for the number of ​revenues ​ has been put into the contract. There can be a
maximum of 50 ​revenues ​. This can be done with the current block gas limit of
ethereum. However, for user gas consumption optimization for transactions, we still
recommend having a storage field to track the revenue last paid index for each user.

● The same recommendation is applied to storage field ​periods ​ in the contract if there is
a high max limitation of the number of periods.

8

● DLC-4
● Severity: Informational
● Likelihood: Medium
● Impact: Medium

● Target: Pool.sol
● Category: Gas
● Finding Type: Dynamic
● Lines: 227-230, 294-300

5. Function ​calculateDuckTokensForMint​ causes ​updatePool
to mint more ​DLC​ than expected

5.1 In the ​Pool ​ contract, the function ​calculateDuckTokensForMint ​ calculates the
amount of DLC needed to mint at the current block. The function has a bug that results in more
DLC than expected will be minted when ​updatePool ​ is called. The bug is caused by not
updating ​lastRewardBlock ​ after each iteration in the for-loop of the function
calculateDuckTokensForMint ​. n example of this would be:

● There are 3 periods in the pools with (startingBlock, blocks) as: (10, 5), (18, 6), (25, 4)
with 1 DLC minted per block.

● updatePool ​ is called at block 11, thus ​calculateDuckTokensForMint ​is called
and returns 1 as line 241 is executed (see an extended issue below). At this point,
lastRewardBlock ​ updated to 11.

● Next, ​updatePool ​ is called at block 26. Function ​calculateDuckTokensForMint
executes three iterations:

○ First iteration: Line 235 executed, which results in totalTokens = 4.
○ Second iteration: Line 235 executed, but totalTokens = 4 + (24 - 11) = 17.
○ Third iteration: Line 239 executed, totalTokens = 17 + (26 - 25) = 18.

● A total of 32 DLC would be minted in this simple example while the total for all three
periods at block 26 should be 5 + 6 + 1 = 12 DLC.

The reasons are:

● lastRewardBlock ​is not updated after each iteration.
● Line 235 should check if ​lastRewardBlock < periods[i].startingBlock

5.2. In function ​calculateDuckTokensForMint ​, the local variable ​overflown ​ should be
set to false initially to avoid solidity compilation that could result in true as default value for
overflown ​.

5.3 An issue related to line 241, as in the example above, at block 11, the number of blocks to
pay rewards should be 2 (blocks 10 and 11), but only 1 DLC is minted at block 11. Is this the
code issue or an intended design?

function​ ​calculateDuckTokensForMint​() ​public​ ​view​ ​returns​(​uint​) {

 ​uint​ totalTokens;

 ​bool​ overflown;

9

● DLC-5
● Severity: High
● Likelihood: High
● Impact: High

● Target: Pool.sol
● Category: DLC Mint Computation
● Finding Type: Dynamic
● Lines: 120-142, 223-248

 ​for​(​uint​ i ​=​ ​0​; i ​<​ periods.length; i​++​) {

 ​if​(​block​.number ​<​ periods[i].startingBlock) {

 ​break​;

 }

 ​uint​ buf ​=​ periods[i].startingBlock.​add​(periods[i].blocks);

 ​if​(​block​.number ​>​ buf ​&&​ buf ​>​ lastRewardBlock) {

 totalTokens ​+=​ buf.​sub​(lastRewardBlock).​mul​(periods[i].tokensPerBlock);

 overflown ​=​ ​true​;

 } ​else​ {

 ​if​(overflown) {

 totalTokens ​+=​ ​block​.number.​sub​(periods[i].startingBlock).​mul​(periods[i].tokensPerBlock);

 } ​else​ {

 totalTokens ​+=​ ​block​.number.​sub​(lastRewardBlock).​mul​(periods[i].tokensPerBlock);

 }

 ​break​;

 }

 }

 ​return​ totalTokens;

 }

Action Recommended:

● Review function ​calculateDuckTokensForMint
● Use a local variable in the function to store lastRewardBlock, and update the local

variable after each iteration
● Line 235: check if _​lastRewardBlock < periods[i].startingBlock, ​the

code at line 235 should become:

function​ ​calculateDuckTokensForMint​() ​public​ ​view​ ​returns​(​uint​) {

 ​uint​ totalTokens;

 ​bool​ overflown;

 ​for​(​uint​ i ​=​ ​0​; i ​<​ periods.length; i​++​) {

 ​if​(​block​.number ​<​ periods[i].startingBlock) {

 ​break​;

 }

 ​uint​ buf ​=​ periods[i].startingBlock.​add​(periods[i].blocks);

 ​if​(​block​.number ​>​ buf ​&&​ buf ​>​ _lastRewardBlock) {

 ​if​ (lastRewardBlock ​<​ periods[i].startingBlock) {

 totalTokens ​+=​ buf.​sub​(periods[i].startingBlock).​mul​(periods[i].tokensPerBlock);

10

 } ​else​ {

 totalTokens ​+=​ buf.​sub​(lastRewardBlock).​mul​(periods[i].tokensPerBlock);

 }

 overflown ​=​ ​true​;

 } ​else​ {

 ​if​(overflown) {

 totalTokens ​+=​ ​block​.number.​sub​(periods[i].startingBlock).​mul​(periods[i].tokensPerBlock);

 } ​else​ {

 totalTokens ​+=​ ​block​.number.​sub​(lastRewardBlock).​mul​(periods[i].tokensPerBlock);

 }

 ​break​;

 }

 }

 ​return​ totalTokens;

 }

Review of the remediation performed at commit
#05414a401452b7c684946f16e229f8c6a613de89: ​The issue has been resolved by the
development team.

11

6. Function ​addRevenue​ has to transfer tokens from the revenue
source to the contract

In the Pool contract, function ​addRevenue ​ must call ​transferFrom ​ to transfer the revenue
tokens to the pool contract address from the revenue source. Without transferring enough
revenue tokens to the pool, the following can happen:

● The pool does not have enough tokens if the pool does not receive enough revenue
tokens from the revenue source.

● This causes any function that calls ​claimRevenue ​ function to fail. Those functions are:
withdraw ​ and ​deposit, ​thus users cannot deposit or withdraw from the pool without
waiting for the revenue to come to the pool.

function​ ​addRevenue​(​address​ _tokenAddress, ​uint​ _amount) ​public​ onlyController {

 Revenue ​memory​ revenue ​=​ ​Revenue​({

 tokenAddress​:​ _tokenAddress,

 totalSupply​:​ lpToken.​balanceOf​(​address​(​this​)),

 amount​:​ _amount

 });

 revenues.​push​(revenue);

 }

Action Recommended:​ ​As a common practice, when revenue is added to the pool, the pool
should call transferFrom function in order to receive revenue tokens in the pool. The following is
a suggested fix:

function​ ​addRevenue​(​address​ _tokenAddress, ​uint​ _amount, ​address​ _revenueSource) ​public​ onlyController

{

 ​uint​ revenueBefore ​=​ ​IERC20​(_tokenAddress).​balanceOf​(​address​(​this​));

 ​IERC20​(_tokenAddress).​transferFrom​(_revenueSource, ​address​(​this​), _amount);

 ​uint​ revenueAfter ​=​ ​IERC20​(_tokenAddress).​balanceOf​(​address​(​this​));

 _amount ​=​ revenueAfter.​sub​(revenueBefore);

 Revenue ​memory​ revenue ​=​ ​Revenue​({

 tokenAddress​:​ _tokenAddress,

 totalSupply​:​ lpToken.​balanceOf​(​address​(​this​)),

 amount​:​ _amount

12

● DLC-6
● Severity: High
● Likelihood: High
● Impact: High

● Target: Pool.sol
● Category: Revenue Transfer
● Finding Type: Dynamic
● Lines: 266-275

 });

 revenues.​push​(revenue);

 }

Review of the issue at commit #05414a401452b7c684946f16e229f8c6a613de89: ​The issue
has been resolved by the development team.

13

7. Unit Tests are insufficient

The code lacks unit tests for deposits and withdrawals. Unit tests are important, especially for
functions that do math in order to ensure the contracts function correctly and follow the design.

Review of the remediation performed at commit
#05414a401452b7c684946f16e229f8c6a613de89: ​Some unit tests for deposits have been
added, but unit tests for withdrawals are missing. We recommend having unit tests on those two
important functions before deploying to Mainnet.

14

● DLC-7
● Severity: High
● Likelihood: High
● Impact: High

● Target: Pool.sol
● Category: Unit tests
● Finding Type: Dynamic

8. The owner of the ​DuckToken​ contract should be transferred to
PoolController

The ownership of the ​DuckToken ​ contract should be transferred to the ​PoolController
contract immediately after the two contracts are deployed in order to ensure that after the Team
and Presale allocation, DLC can only be minted through farming.

This is more of a recommendation for a proper deployment rather than an issue.

15

● DLC-8
● Severity: Medium
● Impact: Medium

● Target: DuckToken.sol
● Category: Ownership
● Finding Type: Dynamic

9. Function ​claimRevenue​ can optimize gas

Function ​claimRevenue ​ can be optimized by:
● Compute the total revenue that can be transferred to user by using the for-loop
● Use a single ​safeRevenueTransfer ​ function call to transfer the total revenue for the

user. This will also reduce the number of events emitted by the ​claimRevenue ​ function
to 1. This is because if there are 50 revenues, 50 transfer events will be emitted, which is
hard to trace later.

16

● DLC-8
● Severity: Notice
● Impact: Medium

● Target: DuckToken.sol
● Category: Gas
● Finding Type: Dynamic

Conclusion
Arcadia identified issues that occurred at hash
#7b5cba2e3145580a352ccacce040db5428bda5b8 that were confirmed to be patched as of
#b53876b56b01fcbf9cea2fe289cf47cafb5385d5. Due to the size of the subsequent
modifications, no analysis was done of any potentially introduced issues after the originally
identified and addressed issues were remediated.

Disclaimer
While best efforts and precautions have been taken in the preparation of this document, The
Arcadia Group and the Authors assume no responsibility for errors, omissions, or damages
resulting from the use of the provided information. Additionally, Arcadia would like to emphasize
that the use of Arcadia's services does not guarantee the security of a smart contract or set of
smart contracts and does not guarantee against attacks. One audit on its own is not enough for
a project to be considered secure; that categorization can only be earned through extensive
peer review and battle testing over an extended period.

17

