

ElasticDAO Contest
Findings & Analysis Report
March 20, 2021

Overview 2
About C4 2
Wardens 2
Judge 2

Summary 4

Scope 5
Code 5

System Overview 7
Contract Logic 7

Severity Criteria 8

Issues Found By Severity 9
High Severity 9
Medium Severity 11
Low Severity 14

Non-Critical Risks 17

Gas Optimizations 17

Disputed Findings 19

Disclosures 20

Overview

About C4
Code 432n4 (C4) is an open organization that consists of security researchers, auditors,
developers, and individuals with domain expertise in the area of smart contracts.

A C4 code contest is an event in which community participants, referred to as Wardens, review,
audit, or analyze smart contract logic in exchange for a bounty provided by sponsoring projects.

During the code contest outlined in this document, C4 conducted an analysis of ElasticDAO’s
smart contract system written in Solidity. The code contest took place between February 25,
2021 and March 3, 2021.

Wardens
9 Wardens contributed reports to the ElasticDAO code contest:

● Christoph Michel
● Gerard Persoon
● Janbro (Alejandro Muñoz-McDonald)
● Noah Citron
● Paulius
● s1m0
● PocoTiempo (Team)

○ Rajeev
○ Mariano Conti
○ Maurelian

Judge
This contest was judged by Zak Cole .

Final report assembled by Zak Cole, John Patten , Nathaniel Fried , and Adam Avenir .

code423n4.com

https://twitter.com/cmichelio
https://twitter.com/gpersoon
https://twitter.com/unsafe_call
https://twitter.com/NoahCitron
https://twitter.com/SolidityDev
https://twitter.com/_smonica_
https://twitter.com/0xRajeev
https://twitter.com/nanexcool
https://twitter.com/maurelian_
https://twitter.com/0xzak
https://twitter.com/jpatten__
https://twitter.com/Nattyfried
https://twitter.com/adamavenir
https://code423n4.com/

Summary
The C4 analysis yielded an aggregated total of 27 unique vulnerabilities.

Of these vulnerabilities, 7 received a risk rating in the category of HIGH severity, 7 received a risk
rating in the category of MEDIUM severity, and 10 received a risk rating in the category of LOW
severity.

C4 analysis also identified an aggregate total of 2 non-critical recommendations and 8 gas
optimizations .

The ElasticDAO team responded to the issues identified as result of this code contest and
provided information regarding any changes to the codebase with a pull request. Links to the
aforementioned PRs are appended to the issue descriptions outlined within the corresponding
details described in the Issues Found By Severity section of this document. A small set of
vulnerabilities and submissions were disputed by the ElasticDAO team. For each of these
issues, a supporting explanation for these disputes is detailed in the Disputed Findings section.

code423n4.com

https://code423n4.com/

Scope

Code
The code under review can be found within the C4 ElasticDAO code contest repository and
comprises 2,220 lines of code across a total of 13 smart contracts written in the Solidity
programming language.

This code, including tests and tooling, is also available at the following URL:
https://github.com/elasticdao/contracts/tree/c657b84469ba33efd8914c7e847830d82cb0f3ca

code423n4.com

File Lines of Code

ElasticDAO.sol 466

ElasticDAOFactory.sol 209

IElasticToken.sol 49

ElasticMath.sol 161

SafeMath.sol 94

DAO.sol 105

Ecosystem.sol 114

EternalModel.sol 107

Token.sol 104

TokenHolder.sol 65

Configurator.sol 128

ReentryProtection.sol 26

ElasticGovernanceToken.sol 592

https://github.com/code-423n4/code-contests/tree/main/contests/02-elasticdao/contracts
https://github.com/elasticdao/contracts/tree/c657b84469ba33efd8914c7e847830d82cb0f3ca
https://code423n4.com/

System Overview
Elastic DAO is a governance protocol that attempts to balance the competing interests
between the different participants in a decentralized ecosystem. Elastic DAO achieves
this by reducing the overall influence that money and early adopters have in existing
DAO governance models.

At the time of writing, voting within the ElasticDAO system relies on the Snapshot
platform with an anticipated implementation of an independent layer 2 solution
following their launch. With this in mind, a majority of the voting logic is executed
through a multisig. This multisig also acts as administrator within the context of the
proxy, ElasticDAO controller, burner, and minter contracts.

Further documentation can be found here .

Contract Logic

core/ElasticDAO.sol defines the logic for deploying, initializing, summoning, joining,
and exiting a DAO.

core/ElasticDAOFactory.sol provides a singular approach for deploying DAOs and is
meant to be managed by the first DAO, ElasticDAO.

tokens/ElasticGovernanceToken.sol is a rebasing token that conforms to the ERC20
spec.

Storage contracts follow a version of the Eternal Storage pattern and are found in
src/models .

As this code conforms to NatSpec formatting specifications, lower level details
regarding function can be found as comments within the code itself.

code423n4.com

https://docs.elasticdao.org/
https://docs.soliditylang.org/en/v0.7.2/natspec-format.html#natspec-format
https://code423n4.com/

Severity Criteria
C4 assesses severity of disclosed vulnerabilities according to a methodology based on OWASP
standards .

Vulnerabilities are divided into 3 primary risk categories:

● Low (1)
● Medium (2)
● High (3)

High-level considerations for vulnerabilities span the following key areas when conducting
assessments:

● Malicious Input Handling
● Escalation of privileges
● Arithmetic
● Gas use

Further information regarding the severity criteria referenced throughout the submission review
process, please refer to the documentation provided in the C4 GitHub repository .

code423n4.com

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://github.com/code-423n4/code-contests/blob/main/JUDGING_CRITERIA.md
https://code423n4.com/

Issues Found By Severity

High Severity

[H-01] Infinite minting of tokens by exploiting eternal storage pattern on DAO.sol
Attackers can overwrite metadata in the models/DAO.sol eternal storage contract by using
the serialize call to change the expected configurator address to the attacker’s address.

This allows the attacker to change the DAO data and potentially mint infinite tokens for
themselves. We consider this risk high severity because it would disrupt the economics of the
DAO in a manner that would prevent the system from performing.

ElasticDAO: Confirmed and resolved in PR #43 .

[H-02] Infinite minting of tokens by exploiting eternal storage pattern on Ecosystem.sol
A similar exploit is possible because of the models/Ecosystem.sol eternal storage contract.
Attackers can change the expected address to their own address while bypassing the
authorization check for this function. This allows the attacker to change the DAO ecosystem
data.

Gaining full access to the DAO ecosystem data is also possible by changing the
daoModelAddress field to an attacker-controlled proxy contract. This attack vector allows
attackers to mint infinite tokens for themselves and potentially break all DAOs created by the
ElasticDAO system.

ElasticDAO: Confirmed and resolved in PR #43

[H-03] Infinite minting of tokens by exploiting eternal storage pattern on Token.sol
An attacker can change the expected DAO address to their own address in the
models/Token.sol contract. The attacker can change the token parameters so that they
receive much more ETH for their shares when exiting from the DAO. Attackers could also steal
all funds from the DAO, effectively breaking ElasticDAO’s model.

ElasticDAO: Confirmed and resolved in PR #43

code423n4.com

https://github.com/elasticdao/contracts/pull/43
https://github.com/elasticdao/contracts/pull/43
https://github.com/elasticdao/contracts/pull/43
https://code423n4.com/

[H-04] Configurator contract allows infinite minting of tokens
Even if a configurator address is hard-coded in the Ecosystem.sol contract, attackers can call
the buildToken function on the services/Configurator.sol contract and change nearly
all of the parameters to be attacker-controlled. The attacker bypasses the authorization check
and gains write access to fields of the DAO ecosystem.

ElasticDAO: Confirmed and resolved in PR #43

[H-05] New users can be blocked from joining
The join function requires users to send an exact amount of ETH for the required shares.
Attackers can survey the mempool for join transactions and send a tiny amount of wei to the
DAO contract to change the required ETH value to a different value than the user submitted.
This griefing attack would prevent new users from joining the DAO.

Malicious actors might use this attack to prevent new votes from derailing the outcome of a
proposal. Normal DAO usage might also block new users from joining. Token curve parameters
change as a result of new join transactions. During times of high demand, many transactions
will fail and effectively result in a self-DOS.

ElasticDAO: Confirmed and resolved in PR #43 and PR #59

[H-06] Incorrect event parameters in transferFrom function
The emitApproval event should occur when the msg.sender is not equal to _from. The event
should be emit Approval(from, msg.sender, _allowances[_from][msg.sender]); instead of emit
Approval(msg.sender, _to, _allowances[_from][msg.sender]). This error may negatively impact
off-chain tools that are monitoring critical transfer events of the governance token.

ElasticDAO: Confirmed and resolved in PR #77

[H-07] Minter can call functions reserved for DAO addresses
In ElasticGovernanceToken.sol , the onlyDAO modifier is meant to only allow a DAO
address to call functions like ̀setBurner` and ̀setMinter`. However, as currently written, this
modifier allows the msg.sender to either be a DAO address or the minter address.

ElasticDAO: Confirmed and resolved in PR #54

code423n4.com

https://github.com/elasticdao/contracts/pull/43
https://github.com/elasticdao/contracts/pull/43
https://github.com/elasticdao/contracts/pull/59
https://github.com/elasticdao/contracts/pull/77
https://github.com/elasticdao/contracts/pull/54
https://code423n4.com/

Medium Severity
[M-01] No check to prevent fee burning
The collectFees function sends fees to a feeAddress in storage, however, there is currently
no check to validate whether or not feeAddress has been initialized. An attacker can call
collectFees to send the fees to the zero address, making recovery impossible. This attack
could be used against new DAOs to burn their main revenue besides the token market.

ElasticDAO: Confirmed and resolved in PR #42

[M-02] Anyone can update the number of token holders
The updateNumberOfTokenHolders function in the ElasticGovernanceToken.sol does
not verify the caller. Anyone could call this function and set the value to 0 . While this does not
put funds at risk, an attacker could set the value of numberOfTokenHolders to MAX_UINT ,
resulting in an overflow and a reverted transaction the next time
updateNumberOfTokenHolders is called to to increment this number.

ElasticDAO: Confirmed and resolved in PR #53

[M-03] The initialize function does not check for non-zero values
The initialize function does not check if the summoners are all non-zero addresses. If all
the initialized summoners happen to be 0, the contract will have to be redeployed.

ElasticDAO: Confirmed and resolved in PR #78

[M-04] Potential for lock out of administrative access
The ̀setController` function in ElasticDAO.sol updates the controller address in one set-up. If the
controller address is set incorrectly, administrative access is prevented because ̀setController`
includes an onlyController modifier. The contract would have to be redeployed if this mistake is
made.

ElasticDAO: “The vulnerability is correct, however, the impact is incorrect. Because we
deploy with proxies, in a worst case scenario, the proxy implementation could be upgraded
to fix this issue.”

code423n4.com

https://github.com/elasticdao/contracts/pull/42
https://github.com/elasticdao/contracts/pull/53
https://github.com/elasticdao/contracts/pull/78
https://code423n4.com/

[M-05] Malicious actors can avoid penalty
A DAO member may be able to predict when they will be penalized if they monitor the mempool
for events related to the penalize function on the contract. This member can then avoid
penalization by transferring their balance to another address and sending it back to the original
account after the next block.

Since the penalty transaction will revert if the amount is greater than the balance, an attacker
could potentially frontrun the penalty by calling the exit function with a miniscule amount of
ETH. They could also exit the DAO completely. This loophole provides potential incentive for
malicious actors to exploit the DAO.

ElasticDAO: Confirmed and resolved in PR #44

[M-06] Double-spend allowance
A malicious attacker can execute a double-spend attack on an allowance by front-running the
execution of an approve() function that alters the state of a balance. Since the
increaseAllowance and decreaseAllowance functions provide the same functionality, the
approve() function is an unnecessary attack vector that can present significant risk.

ElasticDAO: “This issue is present in most ERC20 tokens and very few choose to take the
recommended mitigation step. We've chosen to go with expected behaviour instead of
removing a function that is part of the spec.”

[M-07] Passing a zero address for controller will require redeployment of the contract
Passing a zero address for the controller during initialization will require redeployment of the
contract because the onlyController modifier for critical contract functions cannot be
changed after initial deployment.

ElasticDAO: Confirmed and resolved in PR #47

code423n4.com

https://github.com/elasticdao/contracts/pull/44
https://github.com/elasticdao/contracts/pull/47/files#diff-b01d843824b5d557c2914b0f42fdf4ef84315a85723a9640b7040ec8c29f2cefR115
https://code423n4.com/

Low Severity
[L-01] Wrong logic check in ̀ initialize` function
The initialize function has a check that passes when either the
_ecosystemModelAddress or the _controller address are non-zero values. Unless the
function checks whether both are non-zero, DAOs could be deployed with incorrect parameters
(e.g., the controller set as the zero address).

If the controller address is the zero address, then functions with the onlyController modifier
would be unusable – specifically, penalize , reward , and setController functions. There
would be no way to change the parameters at a later time and the DAO would have to be
redeployed to address this issue.

ElasticDAO: Confirmed and resolved in PR #47

[L-02] Malicious summoner could prevent entry of new DAO members
The summon function allows a summoner to define the initial shares that each summoner
receives. A malicious summoner can mint the total number of summoner shares to be equal to
the maximum possible value of an unsigned integer. Any attempt to mint new shares beyond
this initial supply would fail and result in an overflow. This would prohibit the ability for new
members to join the DAO, which would need to be redeployed.

ElasticDAO: “Summoners are considered to be coordinating, trusted entities. We do not
consider it to be a bug that needs fixing, despite being technically accurate.”

[L-03] The summon function can be called prior to all deposits being received
A summoner can prevent others from receiving initial shares by prematurely calling the summon
function. This function can be called as soon as the DAO contract receives a non-zero amount
of ETH. A malicious summoner could be the first to seed ETH to the contract then prevent
anyone else from joining. Summoners who were willing to seed the DAO would only be able to
receive their shares through a reward transaction sent by the multisig account or by redeploying
the DAO.

ElasticDAO: “Summoners are considered to be coordinating, trusted entities. We do not
consider it to be a bug that needs fixing, despite being technically accurate.”

code423n4.com

https://github.com/elasticdao/contracts/pull/47/files#diff-b01d843824b5d557c2914b0f42fdf4ef84315a85723a9640b7040ec8c29f2cefR115
https://code423n4.com/

[L-04] Potential underflow caused by DAO exit
Safemath is not utilized consistently in the ElasticDAO.sol contract, potentially causing
underflow when DAO members exit. They may leave an amount of ETH smaller than the amount
purchased. Underflow could result in a large number of tokens being minted by msg.sender .

ElasticDAO: Confirmed and resolved in PR #48

[L-05] Incomplete serialize function
The deserialize function can deserialize more fields than can be serialized with the
serialize function. Specifically, the numberOfTokenHolders field can only be serialized
with the updateNumberOfTokenHolders function. This does not result in any significant
security vulnerabilities, but can cause problems in the future composability.

ElasticDAO: “We do not view this as an issue. It may be considered by some to be bad
practice, but it improves gas efficiency in our case.”

[L-06] Missing call to Safemath
The join function includes a subtraction that is made without a call to Safemath . Since this
function involves ETH, an errant value could be problematic.

ElasticDAO: Confirmed and resolved in PR #48

[L-07] Missing calls to Safemath
The wdiv function involves two divisions used without a Safemath.div call.

ElasticDAO: Confirmed and resolved in PR #46

[L-08] decreaseAllowance must be greater than 0
The decreaseAllowance function requires that the new allowance must be greater than 0.
The require argument should allow users to decrease the allowance to zero.

ElasticDAO: Confirmed and removed entirely in PR #81

code423n4.com

https://github.com/elasticdao/contracts/pull/48
https://github.com/elasticdao/contracts/pull/48
https://github.com/elasticdao/contracts/pull/46
https://github.com/elasticdao/contracts/pull/81
https://code423n4.com/

[L-09] Max voting limitation can be manipulated via Sybil attack
ElasticDAO implements a join curve to make Sybil attacks prohibitively expensive since users
cannot purchase more than the DAO-configured maximum number of tokens. As more
addresses join, the more expensive additional attacks become.

We found that attackers could circumvent this restriction if a DAO member has more than the
max number of tokens permitted for voting. This member could join the DAO with another
address using a negligible amount of ETH and transfer shares from their primary account. This
attack vector breaks the current voting model, thereby rendering the max voting token restriction
ineffective.

ElasticDAO: Disputed, partially resolved in PR #59

ElasticDAO maintains that this is a strength of the protocol rather than a weakness. To
successfully sybil attack the network, the attacker would need to purchase so many
tokens on the open market that it would drastically inflate the value of existing members’
shares. These members could also exit from the DAO and start a new one. The financial
incentives in ElasticDAO serve as a protection against attacks such as these. It would be
counterproductive and unfeasible to attack DAOs in this way.

[L-10] Excessively strict penalize function can result in reverted transactions
When calling the penalize function, unless the amount is less than or equal to the available
lambda, the transaction will revert due to SafeMath.sub failing to execute updateBalance .

ElasticDAO: Confirmed and resolved in PR #44

code423n4.com

https://github.com/elasticdao/contracts/pull/59
https://github.com/elasticdao/contracts/pull/44
https://code423n4.com/

Non-Critical Risks
[N-01] Inconsistent values for the transfer event
The burnShares function emits a transfer event passing _deltaLambda as the amount
transferred. The mintShares function uses deltaT . While this does not create a security risk,
it may make it harder for a frontend application to handle the values coming from these events.

ElasticDAO: Confirmed and resolved in PR #52

[N-02] For loop in serial function
The serialize function sets summoners using a for loop. If the list of summoners is
updated and the new list is smaller than the first, the remaining summoners are still considered
active. The loop would include the excess elements. We judge this to be a non-critical risk as the
function can only be called as a trusted party, and the list of summoners is unlikely to be
updated.

ElasticDAO: “This should not be an issue, as summoners are only set before the DAO is
summoned. Additionally, the summoners have no special case or reason for existence
after summoning.”

code423n4.com

https://github.com/elasticdao/contracts/pull/52
https://code423n4.com/

Gas Optimizations
[O-01] Eliminate repetition of deployer check
The initializeToken function validates that the value of msg.sender is equal to that of the
deployer. Since this check is already executed in the onlyDeployer modifier, it should be
considered redundant in order to reduce gas consumption.

ElasticDAO: Confirmed and resolved in PR #56

[O-02] Unused arguments
The second argument in models/Dao.exists is unused.

ElasticDAO: Confirmed and resolved in PR #57

[O-03] Inefficient calculations
SafeMath.pow is less efficient than a repeated squaring algorithm. Furthermore, the
exponentiation in ElasticMath.revamp is very expensive and can be hardcoded as 1e18 .

ElasticDAO: Confirmed and resolved in PR #58

[O-04] Unnecessary storage of summoners
ElasticDao.sol stores the summoners in its storage, despite only using the summoners
stored in the DAO eternal storage model. To save gas, the summoners storage within
ElasticDAO can be removed.

ElasticDAO: Acknowledged, This is for convenience on the frontend. The one time gas
cost replaces repeated O(n) calls to the node with a single call (O(1)).

code423n4.com

https://github.com/elasticdao/contracts/pull/56
https://github.com/elasticdao/contracts/pull/57/files#diff-1709c87ddebd85edd32f6037fe7c58c1c0d02f49e8f4470470942cbe8134389bR56
https://github.com/elasticdao/contracts/pull/58
https://code423n4.com/

[O-05] Unnecessary use of preventReentry modifiers
Many uses of the preventReentry modifiers are used on functions that call trusted contracts
and do not take any attacker-controlled arguments. These include: ElasticDAO.initialize ,
initializeToken , exit , join , penalize , reward , setController ,
setMaxVotingLambda , seedSummoning , summon , ElasticDAOFactory.initialize ,
collectFees , deployDAOAndToken , updateElasticDAOImplementationAddress ,
updateFee , updateFeeAddress , updateManager , and several
ElasticGovernanceToken functions.

ElasticDAO: Confirmed and resolved in PR #79

[O-06] Unnecessary calculation of deployedDAOCount
The ElasticDAOFactory tracks deployedDAOCount in a separate variable. The
deployDAOAndToken function updates this value. This is an unnecessary calculation and
invocation of Safemath because the deployedDAOCount can be returned with a view that
returns deployedDAOAddresses.length .

ElasticDAO: Confirmed and resolved in PR #51

[O-07] Unnecessary call of ElasticMath
The ElasticGovernanceToken and ElasticDAO contracts import both Safemath and
ElasticMath . ElasticMath already imports Safemath .

ElasticDAO: Confirmed and resolved in PR #50

[O-07] Unnecessary checks in setBurner and setMinter functions
These functions check for return values, which is unnecessary. The Boolean will always return
true if complete without reverting.

ElasticDAO: “We like the additional safety of the checks. Gas costs are less important as
this function is called infrequently.”

code423n4.com

https://github.com/elasticdao/contracts/pull/79/files
https://github.com/elasticdao/contracts/pull/51
https://github.com/elasticdao/contracts/pull/50
https://code423n4.com/

[O-08] Unnecessary use of bytes32 setting Name
The events MaxVotingLambdaChanged and ControllerChanged have this parameter,
which serves no purpose because the only place these events are emitted are in the functions
setMaxVotingLambda and setController .

ElasticDAO: Confirmed and resolved in PR #85

code423n4.com

https://github.com/elasticdao/contracts/pull/85
https://code423n4.com/

Disputed Findings
[D-01] Multi-signature threshold not specific in contracts
ElasticDAO’s documentation states that the DAO’s controller is a multi-signature account with
nine members. However, the code makes no mention of this stipulation, nor does it reference
the concept of a multi-signature contract. The actual functionality of ElasticDAO might be
different than what the documentation suggests, which could potentially result in confusion or
financial loss for misinformed investors.

ElasticDAO disputed this bug, saying: “The documentation is a set of living documents.
They, like all project documentation, are subject to change. The controller address in
ElasticDAO.sol is designed to be a multisig. We currently envision that to be a 9 member
multisig, but that may change leading into launch, at which point the documentation will
be updated. Should there ever be a discrepancy between the documentation and the
actual address stored as the controller, an investor only has to look at the contract on
etherscan to see that we are tricking possible investors. Looking at the code on etherscan
would be the only way to verify that the contracts themselves enforced this 9 member
requirement, so looking at the code of the controller address is not any more difficult.
Should this controller ever be changed, the ControllerChanged event would be fired ,
providing investors with the chance to actively monitor changes and notice any trickery. All
of this also ignores the long term financial disincentive involved in tricking potential
investors. Even if the approach described above is not trustless for the warden, the scope
of this contest was the code, not the documentation.”

[D-02] Allowances mapping does not implement eternal storage pattern
Most of the data is stored using the eternal storage pattern, but the mapping _allowance does
not. This could result in unexpected problems after upgrades, but we assess this as a low
probability risk.

ElasticDAO disputed this bug, saying: “This choice was made primarily for gas reasons.
The worst case scenario, a full loss of allowance data, is that every wallet needs to
re-approve the spending of their tokens.”

code423n4.com

https://github.com/elasticdao/contracts/blob/release/0.9.0/src/core/ElasticDAO.sol#L24
https://github.com/elasticdao/contracts/blob/release/0.9.0/src/core/ElasticDAO.sol#L24
https://github.com/elasticdao/contracts/blob/release/0.9.0/src/core/ElasticDAO.sol#L24
https://code423n4.com/

[D-03] seedSummoning mints the incorrect number of shares
Since the amount of eth is being divided by eth per share, the incorrect number of shares are
being minted. Improper minting could result in system failure.

ElasticDAO disputed this bug, saying: “The referenced functionality is performing as
expected. It's possible that the warden did not understand intent, but the report is
incorrect.”

[D-04] seedSummoning mints more tokens than expected
The wdiv function converts the input amount to wei by multiplying by 10^8 . However, the input
amount is already expressed in wei . This causes 10^18 more tokens to be minted as expected
when a summoner calls the seedSummoning function.

ElasticDAO disputed that summoners can mint 10^18 more tokens than expected. This
bug was not reproducible.

[D-05] ElasticMath functions could result in 0
The function wmul in ElasticMath.sol can produce unexpected results if the operands are
positive integers. Multiplication of two positive numbers a and b can result in 0 for every a, b
> 0 and b < 5*10^7 / a . This could result in a critical error since wmul is used for all
arithmetic functions on tokens.

ElasticDAO disputed this bug. The team engaged with several outside mathematics
experts and the original developers of the function. These experts agreed that the
resulting value produced by wmul is less than the minimum supported value in Solidity
and does not present any risk. A more concise explanation of their response and findings
are outlined in a public Gist document .

code423n4.com

https://gist.github.com/smalldutta/51a9836b223277f1595467ad81f27737
https://code423n4.com/

Disclosures
C4 is an open organization governed by participants in the community.

C4 Contests incentivize the discovery of exploits, vulnerabilities, and bugs in smart contracts.
Security researchers are rewarded at an increasing rate for finding higher risk issues. Contest
submissions are judged by a knowledgeable security researcher and solidity developer and
disclosed to sponsoring developers. C4 does not conduct formal verification regarding the
provide code, but instead provides final verification.

C4 does not provide any guarantee or warranty regarding the security of this project. All smart
contract software should be used at the sole risk and responsibility of users.

code423n4.com

https://code423n4.com/

